Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-21T01:04:29.734Z Has data issue: false hasContentIssue false

Chemical stability studies of thermally-carbonized porous silicon

Published online by Cambridge University Press:  17 March 2011

J. Salonen
Affiliation:
Department of Physics, University of Turku, FIN-20014 Turku, Finland
V-P. Lehto
Affiliation:
Department of Physics, University of Turku, FIN-20014 Turku, Finland
M. Björkqvist
Affiliation:
Department of Physics, University of Turku, FIN-20014 Turku, Finland
E. Laine
Affiliation:
Department of Physics, University of Turku, FIN-20014 Turku, Finland
L. Niinistö
Affiliation:
Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, FIN-02015 Espoo, Finland
Get access

Abstract

We have studied chemical stability of thermally-carbonized porous silicon (PS). The initial hydrogen termination of PS has been replaced by carbon using thermal dissociation of acetelyne molecules. This kind of carbonized surface has been found to be at least as stable in humid atmosphere as a thermally-oxidized PS surface. It is also found to be stable in an aqueous KOH and HF. In-vitro studies of tissue compatible in simulated human fluid indicate improved stability and that the carbonized surface could be bioactive.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2. Canham, L.T., Adv. Mater. 7, 1033 (1995).Google Scholar
3. Stewart, M.P. and Buriak, J.M., Adv. Mater. 12, 859 (2000); T. Kalinowski, Z.M. Rittersma, W. Benecke, and J. Binder, Sens. Actuators B 68, 281 (2000); M.J. Schöning, A. Kurowski, M. Thuust, P. Kordos, J.W. Schultze, and H. Lüth, Sens. Actuators B 64, 59 (2000).Google Scholar
4. Drott, J., Lindström, K., Rosengren, L., and Laurell, T., J. Micromech. Microeng. 7, 14 (1997).Google Scholar
5. Canham, L.T., Reeves, C.L., Wright, P.J., Cox, T.I., MRS Fall Meeting 2000, 27.11-1.12.2000, Boston, USA.Google Scholar
6. Letant, S.E., Content, S., Tan, T.T., Zenhausern, F., Sailor, M.J., Sens. Actuators B 69, 193 (2000).Google Scholar
7. Baratto, C., Sberveglieri, G., Comini, E., Faglia, G., Benussi, G., Ferrera, V. La, Quercia, L., Francia, G. Di, Guidi, V., Vincenzi, D., D, Boscarino, and Rigato, V., Sens. Actuators B 68, 74 (2000).Google Scholar
8. Min, H-K., Yang, H-S, and Cho, S. M., Sens. Actuators B 67, 199 (2000).Google Scholar
9. Stewart, M. P. and Buriak, J.M., Angew. Chem. Int. Ed. 37, 3257 (1998); J.M. Buriak, M.P. Stewart, T.W. Todd, M.J. Allen, H.C. Choi, J. Smith, D. Raftery, and L.T. Canham, J. Am. Chem. Soc. 121, 11491 (1999).Google Scholar
10. Canham, L., Reeves, R., Newey, J., Houlton, M., T, Cox, Buriak, J.M., and Stewart, M.P., Adv. Mater. 11, 1505 (1999).Google Scholar
11. Crescenzi, M. De, Marucci, M., Gunella, R., Castrucci, P., Casalboni, M., Dufour, G., and Rochet, F., Surf. Sci. 426, 277 (1999).Google Scholar
12. Salonen, J., Lehto, V-P-, Björkqvist, M., Laine, E., and Niinistö, L., Phys. Stat. Sol., in press.Google Scholar
13. Salonen, J., Lehto, V-P., Björkqvist, M., and Laine, E., Appl. Phys. Lett. 75, 826 (1999).Google Scholar
14. Ohtsuki, C., Kokubo, T., and Yamamuro, T., J. Noncryst. Solids 143, 84 (1992).Google Scholar