Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-25T05:29:36.409Z Has data issue: false hasContentIssue false

Chemical Diffusion in Mixed Conductors with Comparable Ionic and Electronic Transport Numbers: Results for Ag1.92Te

Published online by Cambridge University Press:  15 February 2011

W. Preis
Affiliation:
Institute of Physical and Theoretical Chemistry, Graz University of Technology, Rechbauerstraβe 12, A-8010 Graz, Austria
W. Sitte
Affiliation:
Institute of Physical and Theoretical Chemistry, Graz University of Technology, Rechbauerstraβe 12, A-8010 Graz, Austria
Get access

Abstract

Galvanostatic polarization of a mixed conductor located between an ionically blocking electrode and an electronically blocking electrode in an asymmetric electrochemical cell is treated in detail. Evaluation formulae for the determination of the chemical diffusion coefficient of mixed conductors with comparable ionic and electronic transport numbers are introduced. They allow the determination of the chemical diffusion coefficient of Ag1.92Te as a function of composition at 160°C from galvanostatic polarization and depolarization experiments on the asymmetric cell Ag | AgI | Ag1.92Te | Pt. The chemical diffusion coefficient shows composition dependent values between 0.002 and 0.004 cm2s-1. The electronic transport numbers are obtained independently from four-point van der Pauw measurements with typical values around 0.8–0.9.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hahn, P. and Worrell, W. L., in Ionic and Mixed Conducting Ceramics, edited by Ramanarayanan, T. A., Worrell, W. L. and Tuller, H. L. (The Electrochemical Society, Pennington, NJ, 1994), pp. 317324.Google Scholar
2. Spears, M. A. and Tuller, H. L. in Solid State Ionics IV, edited by Nazri, G. A., Tarascon, J. M. and Schreiber, M. (Mater. Res. Soc. Proc. 369, Pittsburgh, PA, 1995) pp. 271288;Google Scholar
Kosacki, I. and Tuller, H. L., in Solid State Ionics IV, edited by Nazri, G. A., Tarascon, J. M. and Schreiber, M. (Mater. Res. Soc. Proc. 369, Pittsburgh, PA, 1995) pp. 703708.Google Scholar
3. Preis, W. and Sitte, W., J. Chem. Soc. Faraday Trans. 92, 1197 (1996)Google Scholar
4. Preis, W. and Sitte, W., Solid State Ionics 86–88, 779 (1996)Google Scholar
5. Wagner, C., J. Chem. Phys. 21, 1819 (1953)Google Scholar
6. Weppner, W. and Huggins, R. A., J. Electrochem. Soc. 124, 1569 (1977)Google Scholar
7. Wen, C. J., Ho, C., Boukamp, B. A., Raistrick, I. D., Weppner, W. and Huggins, R. A., Intern. Met. Rev. 5, 253 (1981)Google Scholar
8. Honders, A. and Broers, G. H. J., Solid State Ionics 15, 173 (1985)Google Scholar
9. Preis, W. and Sitte, W., J. Chem. Soc. Faraday Trans. 91, 2127 (1995)Google Scholar
10. Miyatani, S., J. Phys. Soc. Japan 13, 341 (1958)Google Scholar
11. Yokota, I., J. Phys. Soc. Japan 16, 2213 (1961)Google Scholar
12. Wagner, C., Prog. Solid State Chem. 10, 3 (1975)Google Scholar
13. Dudley, G. J. and Steele, B. C. H., J. Solid State Chem. 31, 233 (1980)Google Scholar
14. Maier, J., Z. Phys. Chem. (NF) 140, 191 (1984)Google Scholar
15. van der Pauw, L. J., Philips Res. Rep. 13, 1 (1958)Google Scholar
16. Riess, I. and Tannhauser, D. S., Solid State Ionics 7, 307 (1984)Google Scholar
17. Grientschnig, D. and Sitte, W., Z. Phys. Chem. (NF) 168, 143 (1990)Google Scholar
18. Preis, W. and Sitte, W., Solid State Ionics 76, 5 (1995)Google Scholar