Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-01T13:18:47.367Z Has data issue: false hasContentIssue false

Characterizing the Dosimetric Properties of MEH-PPV Using Thermoluminescence (TL)

Published online by Cambridge University Press:  13 February 2014

Alejandro Ortiz-Morales
Affiliation:
Unidad Profesional Interdisciplinaria de Ingeniería y Tecnologías Avanzadas, IPN, Av. Instituto Politécnico Nacional 2580, Col. La Laguna Ticomán, 07340 México DF., México Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, AP. 70-543, 04510 México DF., México
Ramón Gómez-Aguilar
Affiliation:
Unidad Profesional Interdisciplinaria de Ingeniería y Tecnologías Avanzadas, IPN, Av. Instituto Politécnico Nacional 2580, Col. La Laguna Ticomán, 07340 México DF., México
Jaime Ortiz-Lopez
Affiliation:
Escuela Superior de Física y Matemáticas, IPN, Av. Instituto Politécnico Nacional s/n, Col. San Pedro Zacatenco, 07738 México DF., México
Epifanio Cruz-Zaragoza
Affiliation:
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, AP. 70-543, 04510 México DF., México
Get access

Abstract

The thermoluminiscent properties of MEH-PPV and MDMO-PPV conjugated polymers were studied in order to verify if they are suitable for use as TL dosimeter. The dose response that was analyzed cover the wide dose range 0.34-5.44 kGy. The measured glow curves show complex structures which were evaluated with kinetic parameters based on the MO (Mix Order) model together with the CGCD (Computerized Glow Curve Deconvolution) homemade program which is useful to understand the mechanisms responsible for TL emission.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bernius, M. T., Inbasekaran, M., O'Brien, J., and Wu, W., Adv. Mater., 12, 1737 (2000).3.0.CO;2-N>CrossRefGoogle Scholar
Günes, S., Neugebauer, H., and Sariciftci, N.S., Chem. Rev., 107, 1324 (2007).CrossRefGoogle Scholar
Kraft, A., Grimsdale, A.C., and Holmes, A.B., Angew. Chem. Int. Ed., 37, 402 (1998)3.0.CO;2-9>CrossRefGoogle Scholar
Ortiz-Morales, A., Furetta, C., Kitis, G., Mendoza, A. Negrón and Zaragoza, E. Cruz. Rad. Eff. Def. Sol. 161(7), 383393 (2006).CrossRefGoogle Scholar
Cruz-Zaragoza, E., Barboza-Flores, M., Chernov, V., Meléndrez, R., Ramos, B.S., Negrón-Mendoza, A., Hernández, J.M., and Murrieta, H.. Radiat. Prot. Dosim. 119 (1-4), 102105 (2006).CrossRefGoogle Scholar
España, T. Calderón, Cussó, F., Jaque, F., Lifante, G. and Townsend, P.D.. Nucl. Tracks Radiat. Meas. 20(4), 605607 (1992).CrossRefGoogle Scholar
Horowitz, Y. and Yossian, D 1993 J. Phys. D: Appl. Phys. 26 1331 Google Scholar
Azorin, J., Gonzalez, G., Gutierrez, A., Salvi, R., 1984. Health Phys. 46, 269274.CrossRefGoogle Scholar
Martins, D., Hempel, J.P., Andrade, A.M. IEEE Sensors Journal, Vol. 9, No. 7, July 2009.Google Scholar
Kitis, G., Gomez Ros, J.M.., 2000. Nuclear Instruments and Methods in Physics Research A 440, 224231.CrossRefGoogle Scholar
Balian, H.G., Eddy, N.W., 1977. Nucl. Instr. and Meth. 145, 389395.Google Scholar
Primary Photoexcitations in Conjugated Polymers: Molecular Exciton versus Semiconductor Band Model ed. By Sarixiftci, N. S. (World Scientific Publishing, Singapure, 1997)Google Scholar
Da Costa, P. Gomes, Conwell, E. M.., Phys. Rev. B 48, 1993 (1993).CrossRefGoogle Scholar
Barth, S., Bässler, H., Phys. Rev. Lett. 79, 22, 4445 (1997)Google Scholar