Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-16T18:35:22.432Z Has data issue: false hasContentIssue false

Characterizations of Mg Implanted GaN

Published online by Cambridge University Press:  10 February 2011

Gou-Chung Chi
Affiliation:
Department of physics, National Central University, Chung-Li, Taiwan 32054
B. J. Pong
Affiliation:
Department of physics, National Central University, Chung-Li, Taiwan 32054
C. J. Pan
Affiliation:
Department of physics, National Central University, Chung-Li, Taiwan 32054
Y. C. Teng
Affiliation:
Department of physics, National Central University, Chung-Li, Taiwan 32054
C. H. Lee
Affiliation:
Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan 30043
Get access

Abstract

With 150KeV Mg+ ion implantation, the optical and structural characteristics of GaN films were studied. Post-implant annealing up to 1000°C was performed in N2 ambient with a rapid thermal annealing (RTA) system, without an encapsulation layer. We observed a green band photoluminescence from Mg-implanted GaN. This green band photoluminescence should be associated with Mg induced defect-clustering in GaN. We also use the x-ray diffraction method to study the correlation between structure defects and implantation. We observed an extra shoulder peak at the small angle side of the GaN[0004] diffraction peak. The origin of this shoulder may be attributed to implanted magnesium induced GaN lattice strain.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zolper, J. C., Crawford, M. Hagerott, Pearton, S. J., Abermathy, C. R., Vartuli, C. B., Yuan, C. and Stall, R. A., J. Electron. Mater. 25,839 (1996).Google Scholar
2. Lin, C. F., Chi, G. C., Feng, M. S., Guo, J. D., Tsang, J. S., and Hong, J. Minghuang, Appl. Phys. Lett. 68,3758 (1996).Google Scholar
3. Pankove, J. I. and Hutchby, J. A., J. Appl. Phys. 47,5387 (1976).Google Scholar
4. Dingle, R., Sell, D. D., Stokowski, S. E. and Ilegems, M., Phys. Rev. B 4, 1211 (1971).Google Scholar
5. Silkowski, E., Pomrenke, G. S., Yeo, Y. K. and Hengehold, R. L., Physica Scripta T69, 276 (1997).Google Scholar
6. Ilegems, M. and Dingle, R., J. Appl. Phys. 44,4234 (1973).Google Scholar
7. Pong, B. J., Pan, C. J., Teng, Y. C., Chi, G. C., Li, W. H., Lee, K. C. and Lee, C. H., to be published elsewhere.Google Scholar
8. Nakamura, S., Mukai, T., Senoh, M. and Iwasa, N., Jpn. J. Appl. Phys. 31, L139 (1992).Google Scholar
9. Nakamura, S., Iwasa, N., Senoh, M. and Mukai, T., Jpn. J. Appl. Phys. 31, 1258 (1992).Google Scholar
10. Ponce, F. A., Bour, D. P., Gotz, W., and Wright, P. L., Appl. Phys. Lett. 68, 57 (1996).Google Scholar
11. Lee, Chih-Hao, Chi, G. C., Lin, C. F., Feng, M. S. and Guo, J. D., Appl. Phys. Lett. 68,3440 (1996).Google Scholar