Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-06T19:30:53.820Z Has data issue: false hasContentIssue false

Characterization of the Sol-Gel Transition of Alumina Sols Prepared from Aluminum Alcoxides via 27Al NMR

Published online by Cambridge University Press:  28 February 2011

William L. Olson
Affiliation:
Signal Research Center, 50 E. Algonquin Rd., Des Plaines, IL 60017.
Lorenz J. Bauer
Affiliation:
Signal Research Center, 50 E. Algonquin Rd., Des Plaines, IL 60017.
Get access

Abstract

27Al NMRsp ectra were obtained on a series of alumina sols prepared by the hydrolysis of aluminum sec-butoxide. Subtle but distinct differences were observed in the solution 27Al NMR spectra of sols which varied in appearance from being very milky to completely transparent. No changes were observed in the 27Al spectra of sols which had been aged. The adddition of sufficient quantities of acid or base to gel the sol precipitated dramatic changes in the Al spectra. Aluminum-27 NMR was found to be a highly useful tool for probing the sol-gel transformation of this system.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Uhlmann, O. R., Zelinski, B. J. J. and Wnek, G. E., Better Ceramics Through Chemistry; Mat. Res. Soc. Symp. Proc. Vol.32, Edited by Brinker, C. J. (Elsevier, NY, 1984), pp. 5970.Google Scholar
2. Artaki, I., Zerda, T. W., and Jonas, J., Mat. Lett. 3, 493 (1985).Google Scholar
3. Orcel, G. and Hench, L., J. Non-Cryst. Solids 63, 177 (1986).Google Scholar
4. Kriz, O., Casensky, B., Lycka, A., Fusek, J., and Hermanek, S., J. Magn. Res. 60, 375 (1984).Google Scholar
5. Akitt, J. W. and Farthing, A., J. Chem. Soc. Dalton 1981, 1624.Google Scholar
6. Bottero, J. Y., Cases, J. M., Rubini, P., and Flessinger, F., Acad, C. R.. Sc. Paris Serie D 284, 1033 (1977).Google Scholar
7. Bottero, J. Y., Cases, J. M., Flessinger, F., and Poirier, J. E., J. Phys. Chem. 84, 2933 (1980).Google Scholar
8. Akitt, J. W., and Farthing, A., J. Magn. Res. 32, 345 (1978).Google Scholar
9. Akitt, J. W., Greenwood, N. N., Khandelwal, B. L., and Lester, G. D., J. Chem. Soc. Dalton 1972, 604.Google Scholar
10. Akitt, J. W. and Farthing, A., J. Chem. Soc. Dalton 1981, 1606.CrossRefGoogle Scholar
11. Akitt, J. W. and Farthing, A., J. Chem. Soc. Dalton 1981, 1617.Google Scholar
12. Akitt, J. W., Greenwood, N. N. and Lester, G. D., J. Chem. Soc. (A) 1969, 803.Google Scholar
13. Muller, D., Jahn, E., Fahlke, B., Ladwig, G., and Haubenreisser, U., Zeolites 5, 53 (1985).Google Scholar
14. Freude, D. and Behrens, H. J., Crystals Res. Tech. 16, K36 (1981).Google Scholar
15. Fyfe, C. A., Thomas, J. M., Klinowski, J., and Gobbi, G. C., Angew. Chem. Int. Ed. Engl. 22, 259 (1983).Google Scholar
16. Yoldas, B. E., Amer. Ceram. Soc. Bull. 54, 289 (1975).Google Scholar
17. Yoldas, B. E., J. Mater. Sci. 10, 1856 (1975).Google Scholar
18. Yldas, B. E., Amer. Ceram. Soc. Bull. 59, 286 (1975).Google Scholar
19. Yoldas, B. E., Amer. Ceram. Soc. Bull. 59, 479 (1980).Google Scholar
20. Yoldas, B. E., J. Amer. Ceram. Soc. 65, 387 (1982).Google Scholar
21. Olson, W. L. and Welsh, L. B., to be published.Google Scholar
22. Grunwald, E. and Fong, D. W., J. Phys. Chem. 73, 650 (1969).CrossRefGoogle Scholar
23. Fong, D. W. and Grunwald, E., J. Am. Chem. Soc. 91, 2413 (1969).CrossRefGoogle Scholar
24. Fenzke, D., Freude, D., Frohlich, T. and Haase, J., Chem. Phys. Lett. 111, 171 (1984).Google Scholar
25. Fukushima, E. and Roeder, S. B. W., Experimental Pulse NMR A Nuts and Bolts Approach, 1st ed. (Addison-Wesley Publishing Co., Reading, MA, 1981), pp. 157161; pp. 106–112.Google Scholar
26. Komarneni, S., Roy, R., Fyfe, C. A., and Kennedy, G. J., J. Am. Ceram. Soc. 68, C243 (1985).Google Scholar
27. Olson, W. L. and Bauer, L. J., to be published.Google Scholar