Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-18T13:09:14.506Z Has data issue: false hasContentIssue false

Characterization of Pseudomorphic Hemt Structures by Modulation Spectroscopy

Published online by Cambridge University Press:  22 February 2011

A. Dimoulas
Affiliation:
University of Groningen, Department of Applied Physics, Nijenborgh 4, 9747 AG Groningen, The Netherlands
K. Zekentes
Affiliation:
Foundation for Research and Technology-Hellas (FORTH), P.O. Box 1527, Heraklion 711 10, Crete, Greece
M. Androulidaki
Affiliation:
Foundation for Research and Technology-Hellas (FORTH), P.O. Box 1527, Heraklion 711 10, Crete, Greece
Get access

Abstract

Phototransmittance has been used to investigate several pseudomorphic Al0.32Ga0.68As/In0.15Ga0.85As/GaAs high electron mobility transistor structures, with different values of the electron density ns. A lineshape analysis of the ground state transition made it possible to estimate ns, at room temperature. A signal from the Fermi-edge singularity (a manybody effect), was observed at low temperatures and the dependence of its intensity on temperature and electron density was examined.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mimura, T., in Very high speed IC's : Heterostructures, Semiconductors and Semimetals, edited by Ikoma, T. (Academic, New York, 1990), Vol. 30.Google Scholar
2. Skolnick, M.S., Whittaker, D.M., Simmonds, P.E., Fisher, T.A., Saker, M.K., Rorison, J.M., Smith, R.S., Kirby, P.B., and White, C.R.H., Phys. Rev. B 43, 7354 (1991)Google Scholar
3. Pollak, F.H., Superlattices and Microstructures 10, 333 (1991) ; O.J. Glembocki. Proc. SPIE 1286, 2 (1990).CrossRefGoogle Scholar
4. Sydor, M., Badakhshan, A., Engholm, J. R., and Dale, D.A., Appl. Phys. Lett. 58, 948 (1991), and references therein.Google Scholar
5. Yin, Y., Qiang, H., Pollak, F.H., Streit, D.C., and Wojtowicz, M., Appl. Phys. Lett. 61, 1579 (1992).Google Scholar
6. Yin, Y., Qiang, H., Yan, D., Pollak, F.H., and Noble, T.F., Semicond. Sci. Technol. 8, 1599 (1993).Google Scholar
7. Dimoulas, A., Zekentes, K., Androulidaki, M., Kornelios, N., Michelakis, C., and Hatzopoulos, Z., Appl. Phys. Lett. 63, 1417 (1993)CrossRefGoogle Scholar
8. Cingolani, R. and Ploog, K., Adv. Phys. 40, 535 (1991), and references therein.Google Scholar
9. Dimoulas, A., Leng, J., Giapis, K.P., Georgakilas, A., Michelakis, C., and Christou, A., Phys. Rev. B 47, 7198 (1993).Google Scholar
10. Huang, Y.S., Qiang, H., Pollak, F.H., Pettit, G.D., Kirchner, P.D., Woodall, J.M., Stragier, H., and Sorensen, L.B., J. Appl. Phys. 70, 7537 (1991).CrossRefGoogle Scholar