Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-17T14:04:03.388Z Has data issue: false hasContentIssue false

Characterization of Nanocrystalline Silicon Film grown by LEPECVD for Photovoltaic Applications

Published online by Cambridge University Press:  01 February 2011

M. Bollani
Affiliation:
INFM and Dept. of Material Science, Università di Milano-Bicocca, via Cozzi 53, I-20125 Milano, Italy
S. Binetti
Affiliation:
INFM and Dept. of Material Science, Università di Milano-Bicocca, via Cozzi 53, I-20125 Milano, Italy
M. Acciarri
Affiliation:
INFM and Dept. of Material Science, Università di Milano-Bicocca, via Cozzi 53, I-20125 Milano, Italy
L. Fumagalli
Affiliation:
INFM and Dept. of Material Science, Università di Milano-Bicocca, via Cozzi 53, I-20125 Milano, Italy
A. Arcari
Affiliation:
INFM and Dept. of Material Science, Università di Milano-Bicocca, via Cozzi 53, I-20125 Milano, Italy
S. Pizzini
Affiliation:
INFM and Dept. of Material Science, Università di Milano-Bicocca, via Cozzi 53, I-20125 Milano, Italy
H. Von Känel
Affiliation:
INFM and L-NESS, Dept. of Physics, Politecnico di Milano, Via Anzani 52, I-22100 Como, Italy
Get access

Abstract

This work deals with the structural properties of nanocrystalline (nc) silicon films for solar cell applications, grown using a new PECVD process based on an arc discharge plasma characterized by low ion energies, called LEPECVD (Low energy PECVD). This process permits to increase the intensity of the plasma discharge in the growth region and thus to achieve higher growth rates while avoiding ion-induced surface damage of films. The structural properties of the LEPECVD grown films were studied as a function of the deposition parameters (substrate temperature, growth rate, hydrogen dilution) by Raman Spectroscopy, SEM, and HRTEM analysis. The results of this work allowed us to identify the process requirements suitable for the growth of nc-grains in an amorphous matrix.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bailat, J., E. Vallat-Sauvain, Feitknecht, L., Droz, C., Goerlitzer, M. and Shah, A., J. Appl. Phys. 93, 5727 (2003).Google Scholar
2. Shah, A., E. Vallat-Sauvain, Torres, P., Meier, J., Kroll, U., Hof, C., Droz, C., Goerlitzer, M., Wyrsch, N., Venecek, M., Materials Science and Engineering, B 69-70, 219 (2000).Google Scholar
3. Khan, H.R., Frey, H., Banhart, F., Nuclear Instruments and Methods in Physics Research B 112, 84 (1996).Google Scholar
4. Kondo, M., Fukawa, M., Guo, L., Matsuda, A., Journal of Non-Crystalline Solids 266-269, 84 (2000).Google Scholar
5. Kummer, M., Rosenbland, C., Dommann, A., Hackbarth, T., Höck, G., Zeuner, M., Müller, E., and Känel, H. Vo, Materials Science and Engineering. B 89, 288 (2002).Google Scholar
6. Yue, G., Lorentzen, J.D., Lin, J., Han, D., Wang, Q. Appl. Phys. Lett. 75, 492 (1999).Google Scholar
7. Bustarret, E., Hachica, M.A., Brunel, M., Appl. Phys. Lett. 52 (20) 1675, (1988).Google Scholar
8. Shah, A.V., Platz, R., Keppner, H., Solar Energy Mat. And Solar Cells 38, 501 (1995).Google Scholar