Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-19T01:20:43.468Z Has data issue: false hasContentIssue false

Characterization of Interphase Regions Using Atomic Force Microscopy

Published online by Cambridge University Press:  10 February 2011

M. R. Vanlandingham
Affiliation:
Center for Composite Materials and Materials Science Program, University of Delaware, Newark, DE 19716–3144
S. H. McKnight
Affiliation:
Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, MD 21005–5069
G. R. Palmese
Affiliation:
Center for Composite Materials, University of Delaware, Newark, DE 19716–3144
T. A. Bogetti
Affiliation:
Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, MD 21005–5069
R. F. Eduljee
Affiliation:
Center for Composite Materials and Materials Science Program, University of Delaware, Newark, DE 19716–3144
J. W. Gillespie Jr
Affiliation:
Center for Composite Materials and Materials Science Program, University of Delaware, Newark, DE 19716–3144
Get access

Abstract

The use of the atomic force microscope (AFM) to measure surface forces has been developed to optimize its operation as a surface imaging tool. This capability can potentially be extended to evaluate nanoscale material response to indentation. In this paper, a novel technique is used to probe local property changes in multi-component polymer systems. Changes in indentation response in interphase regions are investigated for an adhesive system involving a diffuse polymer-polymer bond and for two composite systems. To date, diamond-tipped probes with effective spring constants of 150 and 310 N/m have been used to investigate polyimide and epoxy resin matrices reinforced by carbon fibers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Palmese, G. R. and McCullough, R. L., J. Adhesion, 44, 29 (1994).Google Scholar
2. Skourlis, T. P. and McCullough, R. L., Comp. Sci. Technol., 49, 363 (1993).Google Scholar
3. Sottos, N. R. and McCullough, R. L., Flight-Vehicle Mater., Struct, and Dynamics: Assessment and Future Directions, 2, 328 (1994).Google Scholar
4. Madhukar, M. S. and Drzal, L. T., J. Comp. Mater., 25, 958 (1991).Google Scholar
5. Williams, J. G., Donnellan, M. E., James, M. R., and Morris, W. L., Mater. Sci. Eng., A126, 305 (1990).Google Scholar
6. VanLandingham, M. R., McKnight, S. H., Palmese, G. R., Eduljee, R. F., Gillespie, J. W. Jr, and McCullough, R. L., J. Mater. Sci. Lett., to be published (1996); Proc. 11th Techn. Conf. Amer. Soc. Comp., 635 (1996).Google Scholar
7. VanLandingham, M. R., McKnight, S. H., Palmese, G. R., Elings, J. R., Huang, X., Bogetti, T. A., Eduljee, R. F., and Gillespie, J. W. Jr, J. Adhesion, submitted (1996).Google Scholar
8. Wedgewood, A. R., Proc. 19th Int. SAMPE Techn. Conf., 420 (1987).Google Scholar
9. Immordino, K. M., McKnight, S. H., and Gillespie, J. W. Jr, Proc. 54th Techn. Conf. Soc. Plast. Eng., 402, 1214 (1996).Google Scholar
10. Immordino, K. M., MS Thesis, University of Delaware, 1996.Google Scholar
11. Maivald, P., Butt, H. J., Gould, S. A. C., Prater, C. B., Drake, B., Gurley, J. A., Elings, V. B., and Hansma, P. K., Nanotechnol., 2, 103 (1991).Google Scholar
12. Weisenhorn, A. L., Khorsandi, M., Kansas, S., Gotzos, V., and Butt, H.-J., Nanotechnol., 4, 106 (1993).Google Scholar
13. Sneddon, I. N., Int. J. Eng. Sci., 3, 47 (1965).Google Scholar
14. Bolshakov, A., Oliver, W. C., and Pharr, G. M. in Thin Films: Stresses and Mechanical Properties V. edited by Baker, S. P. (Mater. Res. Soc. Proc. 356, Pittsburgh, PA, 1995) pp. 675680.Google Scholar