Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-04T03:21:56.604Z Has data issue: false hasContentIssue false

Characterization of Hydrocarbon Plasma used for a-C:H Deposition

Published online by Cambridge University Press:  28 February 2011

J. Wagner
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Eckerstr.4, D-7800 Freiburg, Fed.Rep.Germany
Ch. Wild
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Eckerstr.4, D-7800 Freiburg, Fed.Rep.Germany
A. Bubenzer
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Eckerstr.4, D-7800 Freiburg, Fed.Rep.Germany
P. Koidl
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Eckerstr.4, D-7800 Freiburg, Fed.Rep.Germany
Get access

Abstract

Optical emission analysis and mass spectroscopy was applied to study the rf-glow discharge in hydrocarbons used for the deposition of amorphous hydrogenated carbon (a-C:H).The mass spectra of the positively charged ions in the plasma are characteristic for the hydrocarbon used - e.g.benzene, hexane, or methane.In contrast, the properties of the deposited a-C:H film, such as refractive index, are independent of the precursor gas.Spatially resolved optical measurements show strong emission from C, C2, and CH in the vincinity of the negatively self-biased cathode (substrate) irrespective of the precursor used.Based on these findings we conclude that the fragmentation of the impinging energetic hydrocarbons is one of the key mechanisms for the formation of hard, strongly cross-linked a-C:H films.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For a recent review see: Angus, J.C., Koidl, P., and Domitz, S., in “Plasma Deposition of Thin Films”(CRC, Boca Raton, in press).Google Scholar
2. For a recent review on optical plasma analysis, see: Gottscho, R.A. and Miller, T.A., Pure and Appl.Chem. 56, 189 (1984) and R.W. Dreyfus, J.M. Jasinski, R.E. Walkup, and G.S. Selwyn, Pure and Appl.Chem. 57, 1265 (1985).Google Scholar
3. Bubenzer, A., Dischler, B., and Nyaiesh, A., Thin Solid Films 91, 81 (1982).Google Scholar
4. Wild, Ch., Wagner, J., and Koidl, P., unpublished.Google Scholar
5. Bubenzer, A., Dischler, B., Brandt, G., and Koidl, P., J.Appl.Phys. 54, 4590 (1983).Google Scholar
6. Anderson, L.P., Berg, S., Norström, H., Olaison, R., and Towta, S., Thin Solid Films 63, 155 (1979).Google Scholar
7. Kampas, F.J. and Corderman, R.R., J.of Non-Cryst.Solids 59&60, 683 (1983).Google Scholar
8. Pearse, R.W.B. and Gaydon, A.G., “The Identificatip of Molecular Spectra”, Chapman and Hall, London 4th edn.,1976.CrossRefGoogle Scholar
9. Wagner, J., Wild, Ch., Pohl, F., and Koidl, P., Appl.Phys.Lett. 48, 106 (1986).CrossRefGoogle Scholar
10. Selwyn, G.S. and Kay, E., Plasma Chem.Plasma Process. 5,183 (1985).CrossRefGoogle Scholar