Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T13:20:28.396Z Has data issue: false hasContentIssue false

Characterization of Grain Boundaries and Interfaces by High Resolution Transmission Electron Microscopy

Published online by Cambridge University Press:  22 February 2011

William Krakow*
Affiliation:
IBM Corporation, T.J. Watson Research Center, P.O.Box 218, Yorktown Heights, NY 10598
Get access

Abstract

Several examples will be given of high resolution electron microscope images of both grain boundaries and interfaces and the methods which have been applied to understanding their atomic structure. Specific expitaxial interfacial structures considered are: Pd2Si/Si used for ohmic contacts, Al on Si overlayers and CaF2/Si where the CaF2, is an attractive possibility as a dielectric material. For the case of grain boundaries specific examples of both twist and tilt boundaries in Au will be given to show the imaging capability with the new generation of medium voltage electron microscopes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sheng, T.T. and Chang, C.C., IEEE Trans. Electron Devices, 23 (1976) 532.Google Scholar
2. Ponce, F.A., in Defects in Semiconductors, Narayan, and Tan, (eds.) North-Holland, Amsterdam, (1981), p. 285.Google Scholar
3. Föll, H., Ho, P.S. and Tu, K.N., J. Appl. Phys., 52 (1981) 250.Google Scholar
4. Cherns, D., Smith, D.A., Krakow, W. and Batson, P.E., Phil. Mag., A45 (1982) 107.Google Scholar
5. Krakow, W., Thin Solid Films, 93 (1982) 109.Google Scholar
6. Legoues, F. K., Krakow, W. and Ho, P.S., Phil. Mag., A53 (1986) 833.Google Scholar
7. Tromp, R.M., Legoues, F.K., Krakow, W. and Schowalter, L.J., Phys. Rev., Letts., 61 (1988) 2274.Google Scholar
8. Vaudin, M.D., Cunningham, B. and Ast, D.G., Scripta Metall., 17 (1983) 191.Google Scholar
9. Bourret, A. and Desseaux, J., Phil. Mag., A39 (1979) 419.Google Scholar
10. Bourret, A. and Backmann, J.J., Proc. 4th Int. Symp. on Grain Boundary Structure and Related Phenomena, Supplement to Trans. of Japan Inst. Metals, 27 (1986) 125.Google Scholar
11. Hornstra, J., Physica, 25 (1959) 409 and 26 (1960) 198.Google Scholar
12. Weins, M.J., Gleiter, H. and Chalmers, B., J. Appl. Phys., 42 (1971) 2639.Google Scholar
13. Pond, R.C., Smith, D.A. and Vitek, V., Acta Metall., 27 (1979) 235.Google Scholar
14. Mader, W., Necker, G., Babcock, S.E. and Balluffi, R.W., Scripta Metall., 21 (1987) 555.Google Scholar
15. Krakow, W. in Proc. of Mater. Res. Soc. Symp. on High Resolution Microscopy of Materials, Fall 1988 Meeting, 139 (1988) in Press.Google Scholar
16. Krakow, W., Wetzel, J.T. and Smith, D.A., Phil. Mag., A53 (1986) 739.Google Scholar
17. Krakow, W., and Smith, D.A., J. Mater. Res., 1 (1986) 47.Google Scholar
18. Cosandey, F., Chan, S.-W. and Stadelman, P., Scripta Metall., 22 (1988) 1093.Google Scholar
19. Penisson, J.M., Nowicki, T. and Biscondi, M., Phil. Mag. A58 (1988) 947.Google Scholar
20. Tromp, R.M., Krakow, W. and Legoues, F. K., in Proc. of Mater. Res. Soc. Symp. on High Resolution Microscopy of Materials, Fall 1988 Meeting, 139 (1988) in Press.Google Scholar
21. Batstone, J.L., Philips, J.M. and Hunke, E.C., Phys. Rev. Lett., 60 (1988) 1934.Google Scholar