Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T05:29:29.123Z Has data issue: false hasContentIssue false

Characterization of Fast Diffusing Charged Defects in Semiconductors

Published online by Cambridge University Press:  26 February 2011

T. Heiser
Affiliation:
Laboratoire PHASE, UPR 292 du CNRS, BP20, 67037 Strasbourg Cedex 2, France
A. Zamouche
Affiliation:
Unité de Recherche Physique des Matériaux et Applications, Université de Constantine, routed Aïn El Bey 25000, Constantine, Algerie
A. Mesli
Affiliation:
Laboratoire PHASE, UPR 292 du CNRS, BP20, 67037 Strasbourg Cedex 2, France
Get access

Abstract

A novel technique is introduced to study fast diffusing charged defects in semiconductors. It is based on the capacitance change induced by ion drift in a reverse biased Schottky barrier. It is shown that such charge movement yields exponential capacitance transients, which contain information about the defect concentration and mobility. The method is checked on Li-diffused samples, where the extracted diffusion coefficient are in good agreement with literature data. It is next applied to interstitial copper (Cui) in silicon. In the proposed experiment Cui gives rise to a well defined signal which enables us to investigate near room temperature defect reactions involving Cui. The diffusion data extracted from copper diffused and quenched silicon samples establishes the origin of the signal. Near room temperature precipitation kinetics of Cui are studied and energy barriers are extracted.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kimerling, L.C., Asom, M.T., Benton, J.L., Drevinski, P.J., Caefer, C.E., Mat.Sci. Forum 38, 141 (1988)Google Scholar
2 Johnson, N.M. and Herring, C., Phys. Rev. B 45, 11379 (1992); Phys.Rev.B 46, 15554 (1992)Google Scholar
3 Prigge, H., Gerlach, D., Hahn, P.O., Schnegg, A. and Jacob, H., J. Electrochem.Soc. l38, 1385(1991)Google Scholar
4 Zundel, T., Weber, J., Benson, B., Hahn, P.O., Schnegg, A. and Prigge, H., Appl.Phys.Lett. 53, 1426(1988)Google Scholar
5 Kukimoto, H., Henry, C.H. and Merritt, F.R., Phys.Rev. B7, 2486 (1973)Google Scholar
6 Marciniak, M., J. Electrochem.Soc. 124, 740 (1976)Google Scholar
7 Johnson, N.M., Herring, C. and Van de Walle, C.G., Phys.Rev.Lett. 73, 130 (1994)Google Scholar
8 Heiser, T. and Mesli, A., Appl.Phys. A 57, 325 (1993)Google Scholar
9 Zamouche, A., Heiser, T. and Mesli, A., Appl.Phys.Lett. 66, 5 (1995)Google Scholar
10 Pell, E.M., Phys.Rev. 119, 1222 (1960)Google Scholar
11 Pell, E.M., J.Appl.Phys. 31, 291 (1960)Google Scholar
12 Weber, E.R., Appl.Phys. A 30, 1 (1983)Google Scholar
13 Wang, S.Q., MRS Bulletin, 19, 30 (1994)Google Scholar
14 Prescha, T., Zundel, T., Weber, J., Prigge, H., Gerlach, P., Mat.Sci.Eng. B 4, 79 (1989)Google Scholar
15 Hall, R.H. and Racette, J.H., J.Appl.Phys 35, 379 (1964)Google Scholar
16 Mesli, A. and Heiser, T., Mat.Sci.Eng. B 25, 141 (1994)Google Scholar