Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T14:02:39.325Z Has data issue: false hasContentIssue false

Characterization of Diamond Amorphized by Ion Implantation

Published online by Cambridge University Press:  25 February 2011

William R. Allen
Affiliation:
Metals Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831–6376
Eal H. Lee
Affiliation:
Metals Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831–6376
Get access

Abstract

Single crystal diamond has been implanted at 1 MeV with 2×1020 Ar/m2. Rutherford backscattering spectrometry in a channeled geometry revealed a broad amorphized region underlying a thin, partially crystalline layer. Raman spectroscopy disclosed modifications in the bonding characteristic of the appearance of non-diamond carbon. The complementary nature of the two analysis techniques is demonstrated. The Knoop hardness of the implanted diamond was reduced by implantation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.) Diamond and Diamond-like Films and Coatings, edited by Clausing, R. E., Horton, L. L., Angus, J. C. and Koidl, P. (Plenum Press, New York, 1991).Google Scholar
2.) Robertson, J., Advances in Physics 35, 317 (1986).CrossRefGoogle Scholar
3.) Tsai, H. and Bogy, D.B., J. Vac. Sci. Technol. A 5, 3287 (1987).Google Scholar
4.) Sato, S., Watanabe, H., Takahashi, K., Abe, Y. and Iwaki, M., Nucl. Instr. Meth. B 59/60 (1991) 1391.Google Scholar
5.) Smith, J. E., Brodsky, M.H., Crowder, B. L. and Nathan, M. I., J. of Non-Cryst. Solids 8–10 (1972) 179.CrossRefGoogle Scholar
6.) Feldman, L. C., Mayer, J. W. and Picraux, S. T., Materials Analysis by Ion Channeling (Academic Press, New York, 1982).Google Scholar
7.) Braunstein, G., Talmi, A., Kalish, R., Bernstein, T. and Beserman, R., Rad. Eff. 48 (1980) 139.Google Scholar
8.) Liu, B., Sandhu, G. S., Parikh, N. R., Swanson, M. L. and Chu, W. -K., Nucl. Instr. Meth. B 45 (1990) 420.Google Scholar
9.) Ziegler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).Google Scholar
10.) Sigmund, P., Rad. Eff. 1, 15 (1969).Google Scholar
11.) Norgett, M. J., Robinson, M. T. and Torrens, I. M., Nucl. Eng. Design 33, 50 (1974).Google Scholar
12.) Clinard, F. W. and Hobbs, L. W., chapter 7 in Physics of Radiation Effects in Crystals, edited by Johnson, R. A. and Orlov, A. N. (Elsevier, Amsterdam, 1986).Google Scholar
13.) Lewis, M. B., Nucl. Instr. Meth. 190, 605 (1981).Google Scholar
14.) Ziegler, J. F., Helium Stopping Powers and Ranges in All Elements (Pergamon, New York, 1978).Google Scholar
15.) Iwaki, M., Sato, S., Takahashi, K. and Sakairi, H., Nucl. Instr. Meth. 209/210 (1983) 1129.Google Scholar
16.) Knight, D. S. and White, W. B., J. Mater. Res. 4, 385 (1989).Google Scholar
17.) Hauser, J. J., Patel, J. R. and Rodgers, J. W., Appl Phys. Lett. 30 129 (1977).CrossRefGoogle Scholar