Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-17T12:15:01.907Z Has data issue: false hasContentIssue false

Characterization of Denuded Zones in Silicon Wafers

Published online by Cambridge University Press:  21 February 2011

H. J. Rath
Affiliation:
Wacker Chemitronic GmbH, P.O. Box 1140, D-8263 Burghausen, FRG
J. Reffle
Affiliation:
Wacker Chemitronic GmbH, P.O. Box 1140, D-8263 Burghausen, FRG
D. Huber
Affiliation:
Wacker Chemitronic GmbH, P.O. Box 1140, D-8263 Burghausen, FRG
P. Eichinger
Affiliation:
Fraunhofer-Institut für Festkörpertechnologie (IFT), Paul-Gerhardt-Allee 42, D-8000 München 60, FRG
F. Iberl
Affiliation:
Fraunhofer-Institut für Festkörpertechnologie (IFT), Paul-Gerhardt-Allee 42, D-8000 München 60, FRG
H. Bernt
Affiliation:
Fraunhofer-Institut für Festkörpertechnologie (IFT), Paul-Gerhardt-Allee 42, D-8000 München 60, FRG
Get access

Abstract

Different techniques are presented for the characterization of the two-layered system consisting of a precipitate-free zone and a precipitated zone, generated in CZ-grown silicon wafers by thermal processing. The diffusion length profile can be determined by surface photovoltage characteristics; measurements of the collection efficiency for excess carriers generated by alpha particles gives relevant information about the soft error performance. Finally, oxygen depth profiling by SIMS is discussed. Results are shown and compared with damage patterns obtained from cleavage face etching.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Maher, D., Staudinger, A., and Patel, J. R.: J. Apply. Phys. 47, 3813 (1976).10.1063/1.323241CrossRefGoogle Scholar
2. Craven, R. A.: IEDM 81, Technical Digest, 228 (1981).Google Scholar
3. Huber, D. and Reffle, J.: Sol. State Technol. 26, 137 (1983).Google Scholar
4. Shimura, F. and Tsuya, H.: J. Electrochem. Soc. 129 1062 (1982).CrossRefGoogle Scholar
5. Bagraev, N.T., Vitovskii, N.A., Vlasenko, L. S., Mashovets, T. V., and Rakhimov, O.: Sov. Phys. Semicond. 17, 1263 (1983).Google Scholar
6. Reffle, J., Bernt, H., and Huber, D.: Influence of IG on MOS-Generation Lifetime. Proc. 1984 Electronic Dev. and Mat. Symp., Chen, L. J. ed., Hsinchu, Taiwan, 1984, p. 531.Google Scholar
7. Chappell, T. I., Chye, P. W., and Tavel, M. A.: Solid-State Electronics 26, 33 (1983).10.1016/0038-1101(83)90158-2CrossRefGoogle Scholar
8. Yaney, D. S., Nelson, J. T., and Vanskijke, L.L.: IEEE Trans. Electron Devices ED–26, 10 (1979).10.1109/T-ED.1979.19371CrossRefGoogle Scholar
9. ASTM F 39T7T8.Google Scholar
10. Bernt, H. et al. , to be published.Google Scholar
11. May, T. C. and Woods, M. H.: IEEE Trans. Electron Devices ED–26, 2 (1979).10.1109/T-ED.1979.19370CrossRefGoogle Scholar
12. Kirkpatrick, S.: IEEE Trans. Electron Devices ED–26, 1742 (1979).10.1109/T-ED.1979.19680CrossRefGoogle Scholar
13. Terrill, K., Hu, C., and Neureuther, A.: Solid-State Electronics 27, 45 (1984).10.1016/0038-1101(84)90091-1CrossRefGoogle Scholar
14. Hsieh, C. M., Murley, P. C., and O'Brien, R. R.: IEEE Electron Device Lett. EDL–2, 103 (1981).10.1109/EDL.1981.25357CrossRefGoogle Scholar
15. Weigel, C., Reffle, J., and Huber, D.: Computer-aided process modeling of denuded zone formation in Czochralski silicon. Ref. 6, p. 537.Google Scholar
16. Wittmaack, K.: Nucl. Instr. and Meth. in Phys. Res. 218, 327 (1983).10.1016/0167-5087(83)91001-3Google Scholar
17. Rath, H. J., Stallhofer, P., Huber, D., and Schmitt, B. F.: J. Electrochem. Soc. 131, 1920 (1984).10.1149/1.2115991CrossRefGoogle Scholar