Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T20:14:22.870Z Has data issue: false hasContentIssue false

Characterization of Damage Induced by Cluster Ion Implantation

Published online by Cambridge University Press:  21 March 2011

Takaaki Aoki
Affiliation:
Osaka Science and Technology Center, Utsubo-honmachi, Nishi-ku, Osaka 550-0004, JAPAN Ion Beam Engineering Experimental Laboratory, Kyoto University, Sakyo, Kyoto 606-8501, JAPAN
Jiro Matsuo
Affiliation:
Ion Beam Engineering Experimental Laboratory, Kyoto University, Sakyo, Kyoto 606-8501, JAPAN
Gikan Takaoka
Affiliation:
Ion Beam Engineering Experimental Laboratory, Kyoto University, Sakyo, Kyoto 606-8501, JAPAN
Get access

Abstract

Molecular dynamics simulations of boron monomer and small clusters (B4 and B10) impacting on Si(001) were performed in order to investigate the damage formation by monomer/cluster impact. These monomer and clusters show similar implant depth and efficiency, but different damage structures. At the impact of B monomer with 230eV of incident energy, some point-defects such as vacancy-interstitial pairs are mainly formed. On the other hand B10 produces several times larger number of vacancies and interstitials compared with B1, This damage structure is different from one by B1 implantation and due to high yield amorphization of implanted region. This characteristic damage formation process is expected to cause different annihilation process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Goto, K., Matsuo, J., Sugii, T., Minakata, H., Yamada, I. and Hisatsugu, T., IEDM Tech. Digst., 435 (1996).Google Scholar
2. Goto, K., Matsuo, J., Tada, Y., Momiyama, Y., Sugii, T. and Yamada, I., IEDM Tech. Digst., 471 (1997).Google Scholar
3. Aoki, T., Matsuo, J., Insepov, Z. and Yamada, I., 1998 International Conference on Ion Implantation Technology Proceedings, 1254 (1999).Google Scholar
4. Eaglesham, D. J., Stolk, P. A., Gossman, H. J. and Poate, J. M., Appl. Phys. Lett., 65, 2305 (1994).Google Scholar
5. Jones, K. S., Elliman, P. G., Petravic, M. M., and Kringhoj, P., Appl. Phys. Lett., 68, 3111 (1996).Google Scholar
6. Kusaba, T., Shimada, N., Matsuo, J. and Yamada, I., 1998 International Conference on Ion Implantation Technology Proceedings, 1258 (1999).Google Scholar
7. Agarwal, A., gossmann, H.-J., Jacobson, D. C., Eaglesham, D. J., Sosnowski, M., Poate, J. M., Yamada, I., Matsuo, J. and Haynes, T. E., Appl. Phys. Lett., 73, 2015.Google Scholar
8. Stillinger, F. H. and Weber, T. A., Phys. Rev., B31, 5632 (1985).Google Scholar
9. Ziegler, J. P., Biersack, J. P. and Littmark, U., The stopping and range of ions in solids; New York: Pergamon Press (1985).Google Scholar
10. Perez-Martin, A. M. C., Dominguez-Vazquez, J., Jimenez-Rodoriguez, J. J., Nucl. Instr. and Meth., B164–165, 431 (2000).Google Scholar
11. Caturla, M. J., Rubia, T. D. de la and Gilmer, G. H., Nucl. Instr. and Meth. B106, 1 (1995).Google Scholar