Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-20T21:03:24.906Z Has data issue: false hasContentIssue false

Characteristics of ZnSe Layers Grown on Zn-Stabilized and Se-Stabilized GaAs Substrates

Published online by Cambridge University Press:  25 February 2011

S. Akram
Affiliation:
Electrical, Computer and Systems Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180.
H. Ehsani
Affiliation:
Electrical, Computer and Systems Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180.
L. B. Bhat
Affiliation:
Electrical, Computer and Systems Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180.
S.K. Ghandhi
Affiliation:
Electrical, Computer and Systems Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180.
Get access

Abstract

Organometallic vapor phase epitaxial (OM VPE) growth of ZnSe on GaAs was carried out using dimethylzinc (DMZn) and dimethylselenium (DMSe) as source precursors. The growth of ZnSe can be initiated either by introducing DMZn first (Zn stabilized) or DMSe first (Se stabilized).

A systematic study of this growth initiation step on the properties of ZnSe epilayers was carried out using Photoluminescence (PL) and Double Crystal X-Ray Diffraction (DCD) in order to optimize the ZnSe-GaAs interface. PL and DCD data show a considerable difference in lattice relaxation mechanism between Zn and Se stabilized layers. Se stabilized layers are also seen to be considerably tilted with respect to the substrate. PL properties of Se stabilized layers exhibit strong near band edge emission (NBE) and weak deep level emission such as Y0, compared to layers grown by Zn stabilization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Depuydt, J., Cheng, H., Potts, J., Smith, T., S. Mohapatra. J. Appl. Phys. 62, 4756 (1987).CrossRefGoogle Scholar
2. Stutius, W., Appl. Phys. Lett. 33, 656 (1978).CrossRefGoogle Scholar
3. Yao, T., Takeda, T., Appl. Phys. Lett. 48 160 (1986).CrossRefGoogle Scholar
4. Ghandhi, S. K., Taskar, N. R. and Bhat, L. B., Appl. Phys. Lett., 49, 1290 (1986).CrossRefGoogle Scholar
5. Bhat, I. B., Patel, K., Taskar, N., Ayers, J., Ghandhi, S. K., J. Crys. Growth, 88, 23 (1988).CrossRefGoogle Scholar
6. Mohammed, K., Cammack, D., Dalby, R., Newbury, P., Greenburg, B., Petruzzello, J. and Bhargava, R. N., Appl. Phys. Lett. 50, 37 (1987).CrossRefGoogle Scholar
7. Matthews, J. W. and Blackeslee, A. E., J. Crys. Growth, 27, 118 (1974).Google Scholar
8. Yao, T., Okada, Y., Matsui, S., Ishida, K., Fujimoto, I., J. Crys. Growth, 81, 518 (1987).CrossRefGoogle Scholar
9. Shahzad, K., Phys. Rev. B28, 8309 (1988).CrossRefGoogle Scholar
10. Poliak, F. H. and Cardona, M., Phys Rev. 172, 816 (1968);CrossRefGoogle Scholar
Gavini, A. and Cardona, M., Phys. Rev. B1, 672 (1970).CrossRefGoogle Scholar
11. Blacha, A., Presting, H., Cardona, M. Phys. Status Solid, B126, 11 (1984).CrossRefGoogle Scholar
12. Yamaguchi, E., Takayasu, I., Minato, T., Kawashima, M., J. Appl. Phys., 62, 885 (1987).CrossRefGoogle Scholar
13. Myhajlenko, S., Bastone, J., Hutchinson, H., Steeds, J., J. Phys C. 17, 6477 (1984).CrossRefGoogle Scholar
14. Shahzad, K., Petruzello, J., Olego, D., Cammack, D, App. Phys. Lett. 57, 2452 (1990).CrossRefGoogle Scholar
15. Ohki, A., Shibata, N., Zembutsu, S., J. Appl. Phys., 64 694 (1988).CrossRefGoogle Scholar
16. Li, D., Gonsalves, J., Otsuka, N., Qiu, J., Kobayashi, M., Gunshor, R., App. Phys. Lett. 57, 449 (1990).CrossRefGoogle Scholar