Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-18T21:35:06.199Z Has data issue: false hasContentIssue false

Characteristics of Laser Implantation Doping

Published online by Cambridge University Press:  15 February 2011

K G Ibbs
Affiliation:
The General Electric Company, p.l.c., Hirst Research Centre, Wembley, England, HA9 7PP
M L Lloyd
Affiliation:
The General Electric Company, p.l.c., Hirst Research Centre, Wembley, England, HA9 7PP
Get access

Abstract

UV laser photochemical dissociation and laser enchanced thermal dissociation have been used to generate free metal dopant species from a variety of organometallic molecules near a semiconductor substrate surface. Simultaneous laser annealing via a localised melt phase allows diffusion driven implantation of the metal atoms and subsequent electrical activation in the regrowing material. High levels of dopant concentration and activation are readily achieved in this way.

Results will be presented on doping of silicon by boron using an ArF laser. These will include data on junction depths, number density and carrier density as a function of depth and interpretation of the data in terms of calculated temperature profiles.

The possibility of tailoring junction characteristics by control of laser and gas flow parameters will be considered with preliminary experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Appleton, B. R. and Celler, G. K., (Eds) Laser and Electron Beam Interactions with Solids. Proc. Materials Research Society 4 November 1981. Elsevier Science Pub. Co. Inc. (1982)Google Scholar
2. Allen, S. D., J. App. Phys., 52(11), 6501, (1981)CrossRefGoogle Scholar
3. Boyer, P. K., Roche, G. A., Ritchie, W. H. and Collins, G. J., App. Phys. Lett., 40(8), 716, (1982)CrossRefGoogle Scholar
4. Tsao, J. Y., Ehrlich, D. J., Silversmith, D. J. and Mountain, R. W., IEEE Electron Device Letts., 3(6), 164, (1982)CrossRefGoogle Scholar
5. Johnson, W. E. and Schlie, L. A., App. Phys. Lett., 40(9), 798, (1982)CrossRefGoogle Scholar
6. Andreatta, R. W., Abele, C. C., Osmundsen, J. F., Eden, J. G., Lubben, D. and Greene, J. E., App. Phys. Lett., 40(2), 183, (1982)CrossRefGoogle Scholar
7. Ibbs, K. G. and Lloyd, M. L., Optics and Laser Technology – to be published February 1983Google Scholar
8. Deutsch, T. F., Ehrlich, D. J., Rathman, D. D., Silversmith, D. J. and Osgood, R. M., App. Phys. Lett., 39(10), 825, (1981)CrossRefGoogle Scholar
9. Ehrlich, D. J., Osgood, R. M. and Deutsch, T. F., App. Phys. Lett., 36(11), 916, (1980)CrossRefGoogle Scholar
10. Godfrey, D. J., Hill, A.C. and Hill, C., J. Electrochem. Soc., 128(8), 1798, (1981)CrossRefGoogle Scholar
11. Philipp, H. R. and Taft, E. A., Phys. Rev. 120(1), 37, (1960).CrossRefGoogle Scholar