Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-17T07:53:42.673Z Has data issue: false hasContentIssue false

Characterisation of the Barrier Performance of Cements

Published online by Cambridge University Press:  21 March 2011

F. P. Glasser*
Affiliation:
Chemistry Department, Meston Buildings, University of Aberdeen, AB24 3UE
Get access

Abstract

Portland and modified Portland cements are useful matrices for solidification and storage of wastes. Concrete containing cement is likely to be introduced into the repository. The further use of cement as an engineered barrier reduces materials incompatibility problems. Cement has a high internal pH and maintains a high buffering reserve of alkalinity. This in turn, reduces the solubility of many radionuclides. The source of the immobilisation (chemical, physical) is sensitive to nuclide species: sorption and precipitation are the main binding mechanisms. The conditioning action of cement could affect the performance of other engineered barriers. The deterioration of cements is discussed. Areas of research needs are highlighted.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.International Atomic Energy Agency Information Series, Division of Public Information 01-00678/FS Series 31/01/E.Google Scholar
2. Blezard, R. G., the History of Calcareous Cements in “Lea's Chemistry of Cement”, 4 ed., Ed. Hewlitt, P. C., Edward Arnold (London) p 124 1998 Google Scholar
3. Jiang, W. and Roy, D. M., in “Scientific Basis for Nuclear Waste Management”. Ed., Barkatt, A. and Konynenburg, R. A. Van, Mater. Res. Soc., Proc. 333, Pittsburgh, PA) pp 335340, 1994 Google Scholar
4. A Natural Analogue Study of Cement-Buffered, Hyperalkaline Groundwaters and their Interaction with a Repository Hard Rock NIREX Report S/98/003. Ed., Linklatter, C. M.. NIREX, Harwell, UK 1998 Google Scholar
5. Hartikainen, K., Pietarila, H., Rasilainen, K., Nordman, H., Ruskeeniemi, T., Holtta, P., Siitara-Kauppi, M. and Timonen, J., in “Scientific Basis for Nuclear Waste Management” Ed., Murphy, W. M. and Knecht, D. A., Materials Research Society Proc. 12, Pittsburgh PA, 1996 pp 839846.Google Scholar
6. Miller, W., Alexander, R., Chapman, N., McKinley, I. and Smellie, J., Natural Analogue Studies in the Geological Disposal of Radioactive Wastes. Studies in Environmental Science 57, Elsevier (Amsterdam) ISBN O - 444 81755-7, 1994 Google Scholar
7. Garboczi, E. J., Cement Concr. Res. 20, 591601, 1990 Google Scholar
8. Nyame, B. K. and Illston, J. M., Mag. Concrete Res. 33, No. 116, 139146 (1981).Google Scholar
9.Vault Backfill (NRVB). Document: NIREX reference I/EPN/3 ISBN 1-84029-039-0: UK Patent GB 2295263 (09 July 1997).Google Scholar
10. Smillie, S. and Glasser, F. P., Advances in Cement Res., 11, 97100, 1999 Google Scholar
11. Hong, S.-Y. and Glasser, F. P., Cement and Concrete Res. 29, 18931903, 1999 Google Scholar
12. Glasser, F. P. and Hong, S.-Y., Cement and Concrete Res (in press).Google Scholar
13. Kindness, A., Marcias, A. and Glasser, F. P., Waste Management 14, 311, 1994 Google Scholar
14. Hassett, D. J., Pflughoeft-Hassett, D. F., Kumarathansan, P. and McCarthy, D. J., Proc 12th Annual Madison Waste Conference on Municipal and Industrial Waste, 471487 (1989).Google Scholar
15. Kindness, A., Lalchowski, E. E., Minocha, A. K. and Glasser, F. P., Waste Management 14, 16, 1994 Google Scholar
16. Dickson, C. L. and Glasser, F. P., Barrier Performance of Cement and Concrete. EUR 19780 EN (Commission of The European Communities, Luxembourg, 001).Google Scholar
17. Glasser, F. P., Mineralogical Mag., 65, No. 433, 621–233 (2001)Google Scholar
18. Gjorv, O. E. and Sakai, K. (Eds). Concrete Technology for a Sustainable Development in the 21st Century. E. and Spon, F. (London) 2000 Google Scholar
19. Grattan-Bellew, P. E. (Ed). Concrete Alkali-Aggregate Reactions. Noyes Publications, NJ, 1987 Google Scholar
20. Cowie, J. and Glasser, F. P., Advances in Cement Res. 4, 119134, 1992 Google Scholar
21. Marchand, J. and Skalny, J. P. (Eds). Materials Science of Concrete: Sulfate Attack Mechanisms. Amer. Ceramic Soc., Westerville, OH, 1999 Google Scholar
22. Brew, D. M. R. and Glasser, F. P., Advances in Cement Res. (submitted).Google Scholar
23. Glasser, F. P., Tyrer, M., Quillin, K., Ross, D., Pedersen, J., Goldthorpe, K.; Bennett, D. and Atkins, M., The Chemistry of Blended Cements and Backfills Intended for use in Radioactive Waste Disposal. R and D Technical Report P 98, The Environment Agency (England and Wales) Swindon, England pp 333, 1999 ISBN 1-1857 - 05-1572.Google Scholar
24. Paul, M. and Glasser, F. P., Cement and Concrete Res. 30, 18691877, 2000 Google Scholar
25. Hong, S.-Y. and Glasser, F. P., Cement and Concrete Research (submitted).Google Scholar