Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-15T19:21:52.347Z Has data issue: false hasContentIssue false

Characterisation of Epitaxial MBE and MOCVD GaAs DOPED with Donors or Acceptors Using FTIR Spectroscopy

Published online by Cambridge University Press:  26 February 2011

R. Murray
Affiliation:
J.J. Thomson Physical Laboratory, University of Reading, PO Box 220, Whiteknights, Reading, Berks. RG6 2AF, U.K.
R. C. Newman
Affiliation:
J.J. Thomson Physical Laboratory, University of Reading, PO Box 220, Whiteknights, Reading, Berks. RG6 2AF, U.K.
P. S. Nandhra
Affiliation:
J.J. Thomson Physical Laboratory, University of Reading, PO Box 220, Whiteknights, Reading, Berks. RG6 2AF, U.K.
R. B. Beall
Affiliation:
Philips Research Laboratories, Cross Oak Lane, Redhill, Surrey, U.K.
J. J. Harris
Affiliation:
Philips Research Laboratories, Cross Oak Lane, Redhill, Surrey, U.K.
P. J. Wright
Affiliation:
R.S.R.E., Gt. Malvern, Worcs., U.K.
Get access

Abstract

Epitaxial layers of GaAs grown by MBE or MOCVD and doped with silicon impurities have been studied using FTIR spectroscopy. Vibrational modes are observed for Si(Ga), Si(As), Si(Ga)-Si(As) and a defect labelled SI-X. This latter defect appears to be responsible for the compensation effects found in some highly doped material. The Si(Ga) mode is modified in AlGaAs but understood in terms of a simple statistical model. Epitaxial GaAs layers doped with silicon or beryllium are passivated by exposing the samples to an RF hydrogen plasma which leads to the formation of Si-H and Be-H close pairs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1.Maguire, J., Murray, R., Newman, R.C., Beall, R.B. and Harris, J.J., Appl. Phys.Lett. 50, (1987)Google Scholar
2.Maude, D.K., Portal, J.C., Dmowski, L., Foster, T., Eaves, L., Nathan, M., Heiblum, M., Harris, J.J. and Beall, R.B., Phys.Rev.Lett. 59, 815 (1987)Google Scholar
3.Leigh, R.S. and Newman, R.C., J.Phys.C, 15, L1045 (1982)Google Scholar
4.Leung, P.C., Fredrickson, J., Spitzer, W.G., Kahan, A. and Bouthillette, L., J.Appl.Phys. 45, 1009 (1974)Google Scholar
5.Woodhead, J., Newman, R.C., Tipping, A.K., Clegg, J.B., Roberts, J.A. and Gale, I., J.Phys.D. 18, 1575 (1985)Google Scholar
6.Chen, R.T., Rana, V. and Spitzer, W.G., J.Appl.Phys. 51, 1532 (1980)Google Scholar
7.Leigh, R.S. and Newman, R.C. (J.Phys.C in the press)Google Scholar
8.Eaves, L., Foster, T.J., Maude, D.K., Toombs, G.A., Murray, R., Newman, R.C., Portal, J.C., Dmowski, L., Beall, R.B., Harris, J.J., Nathan, M.I. and Heiblum, M., Int.Conf. on GaAs and Related Compounds, Crete Sept.87Google Scholar
9.Pajot, B., Newman, R.C., Murray, R., Jalil, A., Chevallier, J. and Azoulay, R., (Phys.Rev.B in the press)Google Scholar
10.Nabity, J.C., Stavola, M., Lopata, J., Dautremont-Smith, W.C., Tu, C.W. and Pearton, S.J., Appl.Phys.Lett. 50, 921 (1987)Google Scholar
11.Laithwaite, K., Newman, R.C. and Greene, P.D., J.Phys.C. 8, L77 (1975)Google Scholar
12.Nandhra, P.S., Newman, R.C., Murray, R., Beall, R.B., Harris, J.J., Pajot, B. and Chevallier, J. (submitted to Semicond.Sci. and Tech.)Google Scholar
13.Pajot, B., Jalil, A., Chevallier, J. and Azoulay, R., Semicond.Sci. and Tech. 2, 305 (1987)Google Scholar
14.Pantelides, S.T. in Defects in Semiconductors II edited by von Bardeleben, H.J. (proc.14th Int.Conf. on Defects in Semiconductors, Paris 1986) pp 573–578.Google Scholar