Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-11T23:04:50.901Z Has data issue: false hasContentIssue false

A Channeling Study on Mg Implanted InSb Single Crystals

Published online by Cambridge University Press:  25 February 2011

H.W. Alberts*
Affiliation:
Department of Physics, University of Pretoria, Pretoria, South Africa
Get access

Abstract

Proton and α-particle channeling were used to study the radiation damage caused by the implantation of 160 keV Mg ions in InSb. The implantations took place at various substrate temperatures ranging from room temperature to temperatures just below the melting point and doses ranging from 5.1013 to 1.1016 Mg+ cm−2. The isochronal annealing of the room temperature implanted crystals started at 200°C and damage could not be completely removed even at temperatures just below the melting point. For crystals implanted at elevated substrate temperatures no annealing effects during implantation occured up to 400°C. Above 400°C a sharp reduction of damage indicates that the rate of formation of more complex defect configurations during the implantation process becomes smaller than the annihilation rate of the vacancy-interstitial pairs. A non-linear dependence exists between the degree of radiation damage in the InSb lattice and the implanted dose.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bogatyrev, V.A. and Kachurin, G.A., Sov. Phys. Semicond. 11 56 (1977).Google Scholar
2. Lee, D.H., Olson, G.L. and Hess, L.D., Mat. Res. Soc. Symp. Proc. 1, 281 (1981).Google Scholar
3. Korshunov, A.B., Dubrovskaya, E.K., Sokolov, V.I. and Tikhonova, O.V., Sov. Phys. Semicond. 16 964 (1982).Google Scholar
4. Eisen, F.H., Phys. Rev. 148 828 (1966).Google Scholar
5. Myhra, S., Rad. Effects 59 1 (1981).Google Scholar
6. Foyt, A.G., Lindley, W.T. and Donnelly, J.P., Appl. Phys. Letters 16 335 (1970).Google Scholar
7. Bogatyrev, V.A. and Kachurin, G.A., Sov. Phys. Semicond. 11 798 (1977).Google Scholar
8. Cleland, J.W. and Crawford, J.H. Jr., Phys. Rev. 95 1177 (1954).Google Scholar
9. Kleitman, D. and Yearian, H.J., Phys. Rev. 108 901 (1957).Google Scholar
10. Gonser, U. and Okkerse, B., Phys. Rev. 105 757 (1957).Google Scholar
11. Langguth, G., Lang, E. and Meyer, O., Ion Implantation in Semiconductors (Springer-Verlag Berlin 1971) 228.Google Scholar
12. Bahir, G. and Kalish, R., Rad. Effects 33 199 (1977).Google Scholar
13. Gamo, K., Takai, M., Yagita, H., Takada, N., Masuda, K., Namba, S. and Mizobuchi, A., J. Vac. Sci. Technol. 15 1086 (1978).Google Scholar
14. Skakun, N.A., Stoyanova, I.G., Dikil, N.P., Svetashev, P.A., Trokhin, A.S. and Chapkevich, A.L., Sov. Phys. Semicond. 15 1112 (1981).Google Scholar
15. Friedland, E., van Tonder, B.J.E. and Prins, J.F., Nucl. Instr. and Meth. (In press) (1983).Google Scholar
16. Bogatyrev, V.A., Kachurin, G.A. and Smirnov, L.S., Sov. Phys. Semicond. 12 57 (1978).Google Scholar
17. McNally, P.J., Rad. Effects 6 149 (1970).Google Scholar
18. Hurwitz, C.E. and Donnelly, J.P., Solid State Electr. 13 753 (1975).Google Scholar
19. Wiedeburg, K.-H., Betz, H. and Kranz, H., Phys. Stat. Sol. 31 K69 (1975).Google Scholar
20. Guseva, M.I., Mansurova, A.N., Tikhonov, V.G. and Khorvat, S.N., Sov. Phys. Semicond. 10 872 (1976).Google Scholar
21. Chernysheva, N.Y., Kachurin, G.A. and Bogatyriov, V.A., Phys. Stat. Sol. 47 K5 (1978).Google Scholar
22. Danilov, Yu. A. and Tulovchikov, V.C., Fiz. An. Tekh. Polup. USSR 14 (1) 197 (1980).Google Scholar
23. Destefanis, G.L. and Gailliard, J.P., Appl. Phys. Lett. 35 (1) 40 (1980).Google Scholar
24. Quéré, Y., Rad. Effects 28 253 (1976).Google Scholar