Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-08T23:02:20.162Z Has data issue: false hasContentIssue false

Cesium Ion Implantation in Single Crystal Yttria-Stabilized Zirconia (YSZ) and Polycrystalline MgAl2O4-YSZ

Published online by Cambridge University Press:  21 March 2011

S. Zhu
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2104, U.S.A.
X.T. Zu
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2104, U.S.A.
L.M. Wang
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2104, U.S.A.
R.C. Ewing
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2104, U.S.A.
Get access

Abstract

YSZ and MgAl2O4-YSZ composite are two promising materials as in the inert matrix nuclear fuel for the incineration of plutonium. In this study, 400 keV Cs ions were implanted to a fluence of 1×1017 ions/m2 in both materials in order to investigate the retention behavior of fission product at elevated temperature. The implantations were completed at room temperature for the YSZ and 973 K for MgAl2O4-YSZ, respectively. Subsequent annealing at 1273 K was performed after a room temperature implantation of YSZ. After annealing, a high density of gas bubbles formed with diameter from 3 to 40 nm from the surface to a depth of 150 nm in the YSZ matrix. The swelling due to bubbles formation was estimated to be 2.5%. In situ TEM was employed during high temperature ion implantation of the MgAl2O4-YSZ composite. A high density of small bubbles with 5 nm in diameter formed in the MgAl2O4 and YSZ grains after an ion dose of 1×1017 ions/cm2. There was no preferential precipitation along grain boundaries. Electron Paramagnetic resonance (EPR) spectroscopy was used to investigate the type of defects that formed in the YSZ matrix.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sickafus, K.E., Hanrahan, R.J., McClellan, K.J., Mitchell, J.N., Wetteland, C.J., Butt, D.P., Chodak, P., Ramsey, K.B., Blair, T.H., Chidester, K., Matzke, H., Yasuda, K., Verrall, R.A., Yu, N., Am. Ceram. Soc. Bull., 78 (1999) 69.Google Scholar
2. , Degueldre and Paratte, J.-M., Nucl. Tech., 123 (1998) 21.Google Scholar
3. Overby, V. M., McPheeters, C.C., Degueldre, C. and Paratte, J.-M., J. Nucl. Mater., 245 (1997) 17.Google Scholar
4. Fleischer, E.L., Norton, M.G., Zaleski, M. A., Hertl, W., Carter, C. B., Mayer, J.W., J. Mater. Res., 6 (1991) 1905.Google Scholar
5. Yu, N., Sickafus, K.E., Kodali, P., Nastasi, M., J. Nucl. Mater., 244 (1997) 266.Google Scholar
6. Sasajina, N., Matsui, T., Hojou, K., Furuno, S., Otsu, H., Izui, K., Muromura, T., Nucl. Instr. and Meth. B 141 (1998) 487.Google Scholar
7. Sickfus, K.E., Matzke, Hj., Hartmann, T., Yasuda, K., Valdez, J. A., Chodak, P. III, Nastasi, M. and Verrall, R.A., J. Nucl. Mater., 274 (1999) 66.Google Scholar
8. Wang, L.M., Wang, S.X. and Ewing, R.C., Phil. Mag. Lett. 80 (2000) 341.Google Scholar
9. Clinard, F.W. Jr, Hurley, G.F., Hobbs, L.W., J. Nucl. Mater., 108–109 (1982) 655.Google Scholar
10. Zinkle, S. J., J. Am. Ceram. Soc., 72 (1989) 1343.Google Scholar
11. Borders, N., Wang, L.M., Ewing, R.C., J. Mater. Res., 10 (1994) 981.Google Scholar
12. Yu, N., Sickafus, K. E., Nastasi, M., Phil. Mag. Lett., 70 (1994) 235.Google Scholar
13. Kleykamp, H., J. Nucl. Mater., 274 (1999) 206.Google Scholar
14. Zirgler, J.F., the Stopping and Range of Ions in Matter IBM-Research, York town, NY, 1999.Google Scholar
15. Zinkle, S. J. and Kinoshita, C., J. Nucl. Mater., 251 (1997) 312.Google Scholar
16. Pouchon, M.A., Döbeli, M., Degueldre, C. and Burghartz, M., J. of Nucl. Mter., 274 (1999) 61.Google Scholar
17. Youngman, R.A., Mitchell, T. E., Clinard, F.W. Jr, Hrley, G.F., J. Mater. Res., 6 (1991) 2178.Google Scholar
18. Yamada, R., Zinkle, s. J., Pells, G.P., J. Nucl. Mater., 209 (1994) 191.Google Scholar
19. Natani, N., Yamashita, T., Matsuda, T., Kobayashi, S.i. and Ohmichi, T., J. of Nucl. Mater., 274 (1999)15.Google Scholar
20. Wang, L.M., Zhu, S., Wang, S.X., Ewing, R.C., Boucharat, N., Fernadez, A., , Hj., Matzke, Prog. Nucl. Energy, 38 (2001) 295.Google Scholar
21. Zhang, X. and Klabunde, K., J. Inorg. Chem., 31 (1992) 1706.Google Scholar
22. Abiaad, E., Bechara, R., Grimblot, J. and Aboukais, A., Chem. Mater., 5 (1993)793.Google Scholar
23. Lopez, T., Tzompantzi, F., Navarrete, J., Gomez, R., Boldu, J.L., Munoz, E., Novaro, O., J. Catal., 181 (1999) 285.Google Scholar