Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T18:33:17.212Z Has data issue: false hasContentIssue false

Cell Attachment and Protein Adsorption to Polypyrrole thin Films

Published online by Cambridge University Press:  25 February 2011

Joyce Y. Wong
Affiliation:
Dept. of Chemical Engineering, MIT, Cambridge, MA 02139
Robert S. Langer
Affiliation:
Dept. of Chemical Engineering, MIT, Cambridge, MA 02139
Donald E. Ingber
Affiliation:
Depts. of Surgical Research and Pathology, Children's Hospital and Harvard Medical School, Boston, MA 02115
Get access

Abstract

Thin films of polypyrrole were synthesized using both chemical oxidative and electrochemical methods. The resulting oxidized films were characterized by UV/VIS spectroscopy, contact angle and conductivity measurements. In vitro studies suggest that extracellular matrix molecules, such as fibronectin, adsorb efficiently onto polypyrrole thin films and that 3T3 Balb/c mouse fibroblasts attach and spread normally on polypyrrole.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Valentini, R.F., Sabatini, A.M., Dario, P. and Aebischer, P., Brain Res. 480 300304 (1989).Google Scholar
2. Baier, R.E., Shafrin, E.G. and Zisman, W.A., Science 162 13601368 (1968).Google Scholar
3. Grinnell, F., Int. Rev. Cytol. 53 65144 (1978).Google Scholar
4. Ingber, D.E., Proc. Natl. Acad. Sci. USA 87 35793583 (1990).Google Scholar
5. Mooney, D., Hansen, L., Vacanti, J., Langer, R., Farmer, S. and Ingber, D., J. Cell. Physiol. 151 497505 (1992).Google Scholar
6. Umana, M. and Waller, J., Anal. Chem. 58 29792983 (1986).Google Scholar
7. Miller, L.L., Mol. Cryst. Liq. Cryst. 160 297 (1988).Google Scholar
8. Shinohara, H., Aizawa, M. and Shirakawa, H., Chem. Lett. 179–182 (1985).Google Scholar
9. Boyle, A., Genies, E. and Fouletier, M., J. Electroanal. Chem. 279 179186 (1990).Google Scholar
10. Smith, A.B. and Knowles, C.J., J. Appl. Polym. Sci. 43 399403 (1991).Google Scholar
11. Prezyna, L.A., Qiu, Y.-J., Reynolds, J.R. and Wnek, G.E., Macromolecules 24 52835287 (1991).Google Scholar
12. Minehan, D.S., Marx, K.A. and Tripathy, S.K., Polym. Mat. Sci. Eng. 64 341–2 (1991).Google Scholar
13. Gregory, R.V., Kimbrell, W.C. and Kuhn, H.H., Synth. Met. 28 C823–C835 (1989).Google Scholar
14. van der Pauw, L.J., Philips Res. Repts 13 19 (1958).Google Scholar
15. Gabridge, M.G., In Vitro 17 (2), 9197 (1981).Google Scholar
16. Diaz, A.F. and Kanazawa, K.K., in Polvovrrole: An electrochemical approach to conducting polymers, edited by Miller, J.S. (Plenum Press, New York, 1983) pp. 417441.Google Scholar
17. Horbett, T.A. and Schway, M.B., J. Biomed. Mater. Res. 22 763793 (1988).Google Scholar
18. Grinnell, F. and Feld, M.K., J. Biomed. Mater. Res. 15 (3), 363–81 (1981).Google Scholar