Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T05:23:30.408Z Has data issue: false hasContentIssue false

Cause of Forward Voltage Degradation for 4H-SiC PiN Diode with Additional Process

Published online by Cambridge University Press:  27 January 2014

Tetsuro Hemmi
Affiliation:
Power Engineering R&D Center, Kansai Electric Power Co., Inc., 3-11-20 Nakoji, Amagasaki, Hyogo 661-0974, Japan
Koji Nakayama
Affiliation:
Power Engineering R&D Center, Kansai Electric Power Co., Inc., 3-11-20 Nakoji, Amagasaki, Hyogo 661-0974, Japan
Katsunori Asano
Affiliation:
Power Engineering R&D Center, Kansai Electric Power Co., Inc., 3-11-20 Nakoji, Amagasaki, Hyogo 661-0974, Japan
Tetsuya Miyazawa
Affiliation:
Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 Japan
Hidekazu Tsuchida
Affiliation:
Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 Japan
Get access

Abstract

The forward voltage degradation in 4H-SiC PiN diodes with a simplified process and that in 4H-SiC pin diodes with additional processes are investigated. Photoluminescence images were also observed to identify the cause of forward voltage degradation. The forward voltage degradations of 4H-SiC PiN diodes with additional processes were larger than those with a simplified process. Observing photoluminescence images of diodes after a current stress test showed that less than 25% of Shockley-type stacking faults in 4H-SiC PiN diodes with a simplified process are caused by half-loop dislocations, which are generated not only in the additional processes but also in the whole device fabrication process. With additional processes, those rates are over 65%, which may be reduced by eliminating half-loop dislocations due to the optimization of the process condition and sequence.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Skowronski, M. and Ha, S., J. Appl. Phys. 99 011101 (2006)CrossRefGoogle Scholar
Bergman, J. P., Lendenmann, H., Nilsson, P. A., Lindefelt, U. and Skytt, P., Mater. Sci. Forum 353-356, 299 (2001)CrossRefGoogle Scholar
Maximenko, S. I. and Sudarshan, T. S., J. Appl. Phys. 97, 074501 (2005)CrossRefGoogle Scholar
Camara, N., Thuaire, A., Bano, E. and Zekentes, K., Mater. Sci. Forum 483-485, 773 (2005)CrossRefGoogle Scholar
Nakayama, K., Sugawara, Y., Miyanagi, Y., Asano, K., Ogata, S., Okada, S., Izumi, T. and Tanaka, A., Mater. Sci. Forum 600-603, 1175 (2008)CrossRefGoogle Scholar
Ishii, R., Miyanagi, T., Kamata, I., Tsuchida, H., Nakayama, K. and Sugawara, Y., Mater. Sci. Forum 556-557, 251 (2007)CrossRefGoogle Scholar
Ito, M., Strasta, L. and Tsuchida, H., Appl. Phys. Express 1, 015001 (2008)CrossRefGoogle Scholar
Tsuchida, H., Kamata, I., Jikimoto, T. and Izumi, K., J. Cryst. Growth 237-239 Part2, 1206 (2002)CrossRefGoogle Scholar
Strasta, L. and Tsuchida, H., Appl. Phys. Lett. 90, 062116 (2007)CrossRefGoogle Scholar
Hiyoshi, T. and Kimoto, T., Appl. Phys. Express 2, 041101 (2009)CrossRefGoogle Scholar
Nakayama, K., Sugawara, Y., Ishii, R., Tsuchida, H., Miyanagi, T., Kamata, I.. Nakamura, T., IEEJ Trans. IA 128, 10131019 (2008) (in Japanese)CrossRefGoogle Scholar
Hemmi, T., Nakayama, K., Asano, K., Miyazawa, T. and Tsuchida, H., abstr. 20th Conf. on Professional Group of SiC and Related Wide Bandgap Semiconductors, P-103 (2011) (in Japanese)Google Scholar
Skowronski, M., Liu, J. Q., Vetter, W. M., Dudley, M., Hallin, C. and Lendenmann, H., J. Appl. Phys. 8, pp. 46994704 (2002)CrossRefGoogle Scholar
Miyanagi, T., Tsuchida, H., Kamata, I., Nakamura, T., Nakayama, K., Ishii, R. and Sugawara, Y., Appl. Phys. Lett. 89, 062104 (2006)CrossRefGoogle Scholar