Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-18T23:36:51.387Z Has data issue: false hasContentIssue false

Cation Conductivity in Mixed Sulfate-Based and Mixed Iodide-Based Solids with Phase Transitions

Published online by Cambridge University Press:  16 February 2011

E. A. Secco*
Affiliation:
Department of Chemistry, St. Francis Xavier University, Antigonish, Nova Scotia, CANADA, B2G 2W5
Get access

Abstract

The ac electrical conductivity versus temperature dependence of solids undergoing phase transitions incorporating various guest ions, viz isovalent cations and anions, ions with different ionic radius, ions with different polarizability, in Na2SO4-based, Ag2SO4-based, Li2SO4-based and U02SO4-based compositions along with MxTl(1x)I compositions for 1 ≤ x ≤ 0.13, whose M = K, Rb, Cs, are reported. An overview is given of the interplay of various factors, structural and non-structural, with their contribution limits impacting on locking-in the fast cation conductivity phase and the interpretation of fast-ion conductivity in the context of a percolation-type of ionstransport mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ziman, J. M., Models of Disorder (Cambridge University Press, Cambridge, 1979), Chap. 9.Google Scholar
2. Zallen, R., The Physics of Amorphous Solids (John Wiley & Sons, New York, 1983), Chap. 4.Google Scholar
3. Gundusharma, U. M. and Secco, E. A., Appl. Phys. A51, 7 (1990).Google Scholar
4. Leblanc, M. D., Gundusharma, U. M. and Secco, E. A., Solid State Ionics 20, 61 (1986).Google Scholar
5. Secco, E. A., Mat. Res. Soc. Symp. Proc. 293, 379 (1993).Google Scholar
6. Gundusharma, U. M. and Secco, E. A., Can. J. Chem. 65, 1205 (1987).Google Scholar
7. Plyushchev, V. E., Samsuseva, R. G. and Poletaev, I. F., Zh. Neorgan. Khim. 7, 860 (1962); Russ. J. Inorg. Chem. (Engl. Transl.) 445 (1962).Google Scholar
8. Angell, C. A., Solid State Ionics 9/10, 3 (1983); 18/19, 72 (1986).Google Scholar
9. Fedorov, P. I., Neorg, Zh.. Khim. 11, 2176 (1966); Russ J. Inorg. Chem. (Engl. Transl.) 11, 1168 (1966).Google Scholar
10. Huang, P-N. and Secco, E. A., solid State Ionics (in press 1994); 9th International Conference on Solid State Ionics, The Hague, The Netherlands, September 12-17, 1993.Google Scholar
11. Secco, R. A. and Secco, E. A., J. Phys. Chem. Solids 53, 749 (1992).Google Scholar
12. Jiang, M. R. M. and Weller, M. T., J. Chem. Soc. Faraday Trans. 87, 3787 (1991).Google Scholar
13. Jiang, M. R. M. and Weller, M. T., Solid State Ionics 46, 341 (1991).Google Scholar
14. Secco, E. A., Solid State Ionics 68, 213 (1994).Google Scholar
15. Shannon, R. D., Acta Crystallogr. A 32, 751 (1976).Google Scholar
16. Wuensch, B. in Solid State Ionics of International Conference on Advanced Materials edited by Balkanski, M., Takahashi, T. and Tuller, H. L. (Elsevier Science Publishers, Amsterdam, 1992) p. 291.Google Scholar
17. Zhang, Z., Anderson, S., Eckert, H. and Kennedy, J. H., J. Electrochem. Soc. 139, 469 (1992).Google Scholar
18. Barrer, R. M., Proc. Brit. Ceram. Soc. 1, 145 (1964).Google Scholar
19. Breck, D. W., J. Chem. Educ. 41, 678 (1964).Google Scholar
20. Cohn, J. G. in Kinetics of Reactions in Ionic Systems, Vol 4 of Materials Science Research, edited by Gray, T. J. and Frechette, V. D. (Plenum, New York, 1967) p. 12.Google Scholar
21. Cotton, F. A. and Wilkinson, G., Advanced Inorganic Chemistry 3rd ed. (Interscience, New York, 1972) p. 280.Google Scholar
22. Greenwood, N. N. and Earnshaw, A., Chemistry of the Elements (Pergamon, New York, 1984) p. 255.Google Scholar
23. Huang, P-N. and Secco, E. A., J. Solid State Chem. 103, 314 (1993).Google Scholar