Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-26T19:22:51.345Z Has data issue: false hasContentIssue false

Cathodoluminescence of CdSe/ZnS Quantum Dot Composites

Published online by Cambridge University Press:  15 February 2011

J. Rodriguez-Viejo
Affiliation:
Chemical Engineering, Cambridge, Massachusetts 02139.
J. R. Heine
Affiliation:
Materials Science and Engineering, Cambridge, Massachusetts 02139.
B. O. Dabbousi
Affiliation:
Massachusetts Institute of Technology, Departments of Chemistry, Cambridge, Massachusetts 02139.
H. Mattoussi
Affiliation:
Materials Science and Engineering, Cambridge, Massachusetts 02139.
J. Michel
Affiliation:
Materials Science and Engineering, Cambridge, Massachusetts 02139.
M. G. Bawendi
Affiliation:
Massachusetts Institute of Technology, Departments of Chemistry, Cambridge, Massachusetts 02139.
K. F. Jensen
Affiliation:
Chemical Engineering, Cambridge, Massachusetts 02139. Materials Science and Engineering, Cambridge, Massachusetts 02139.
Get access

Abstract

We report cathodoluminescence and photoluminescence spectra originating from ZnS overcoated CdSe nanocrystals of 33 and 42 Å diameter imbedded in a ZnS matrix. The thin film quantum dot composites were synthesized by electrospray organometallic chemical vapor deposition. The cathodoluminescence intensity depends on the crystallinity of the ZnS matrix and on the voltage and current density applied. Electron beam irradiation caused a decrease of the luminescence which may be explained by electron ionization of the quantum dots. Quenching of the cathodoluminescence at low temperatures is attributed to a more efficient trapping of the ionized electrons in deep traps inside the ZnS matrix.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Brus, L., Appl. Phys. A53, 465 (1991).Google Scholar
2.Murray, C.B., Norris, D.J., Bawendi, M.G., J. Amer. Chem. Soc. 115, 8706 (1993).Google Scholar
3.Hines, M.A., Guyot-Sionnest, P., J. Phys. Chem. 100, 468 (1996).Google Scholar
4.Dabbousi, B.O. et al. To be published.Google Scholar
5.Danek, M., Jensen, K.F., Murray, C.B., Bawendi, M.G., Appl. Phys. Lett. 65, 2795 (1994).Google Scholar
6.Danek, M., Jensen, K.F., Murray, C.B., Bawendi, M.G., Chem. of Mater. 8, 173 (1996).Google Scholar
7.Everhart, T.E. and Hoff, P.H., J. Appl. Phys. 42, 5837 (1971).Google Scholar
8.Chepic, D.J., Efros, Al.L., Ekimov, A.I., Ivanov, M.G., Kharchenko, V.A., Kudriaevtsev, I.A., Yazeva, T.V., J. Lumin. 47, 113 (1990).Google Scholar
9.Roussignol, P., Ricard, D., Lukasik, J., Flytzanis, C., J. Opt. Soc. Am. B 4, 5 (1987)Google Scholar