Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-17T10:38:29.783Z Has data issue: false hasContentIssue false

Catalytic Growth of Carbon Nanofibers and Nanotubes

Published online by Cambridge University Press:  22 February 2011

R. Terry
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
K. Baker
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
Nelly M. Rodriguez
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
Get access

Abstract

Carbon nanofibers and nanotubes have been prepared from the decomposition of carbon containing gases with the aid of an iron catalyst particle. The physical characteristics as well as the degree of crystalline perfection of the structures were found to be dependent on the nature of the metal particle and the conditions at which the material was grown. Transmission electron microscopy revealed that nanofibers were obtained from large catalyst particles (>20 nm), whereas nanotubes were formed by the aid of smaller particles (<20 nm). The orientation of the graphitc platelets in the carbon nanofibers was dependent on the alignment of the planes at the rear faces of the iron particle that were responsible for the precipitation of carbon. Carbon nanofibers exhibited reactivity in carbon dioxide comparable to that of single crystal graphite under the same conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, S., Nature 354, 56 (1991).Google Scholar
2. Ando, Y., Jpn. J. Appl. Phys. 32, L134 (1993)Google Scholar
3. Ebbesen, T.W., Hiura, H., Fujita, J., Ochiari, Y., Matsui, S. and Tanigaki, K., Chem. Phys. Let. 209, 83 (1993).Google Scholar
4. Ando, Y. and Iijima, S., Jpn. J. Appl. Phys. 32, L107 (1993)Google Scholar
5. Mintmire, J. W., Dunlap, B. I., and White, C. T., Phys. Rev. Lett. 68, 631 (1992)Google Scholar
6. Hamada, N., Sawada, S., and Oshiyama, A., Phys. Rev. Let. 68, 1579 (1992)Google Scholar
7. Ebbesen, T. W. and Ajayan, P. M., Nature 358, 220 (1992)Google Scholar
8. Bethune, D. S., Kiang, C. H., Vries, M. S. de, Gorman, G., Savoy, R., Vazquez, J., and Beyers, R., Nature 363, 605 (1993)Google Scholar
9. Ohkohchi, M., Ando, Y., Bandow, S., and Saito, Y., Jpn. J. Appl. Phys. 32, L1248 (1993)Google Scholar
10. Rostrup-Nielsen, J. R., J. Catal. 85, 31 (1984)Google Scholar
11. Trimm, D. L., Holmen, A., and Lindvag, O., J. Chem. Tech. Biotechnol. 31, 311 (1981).Google Scholar
12. Albright, L. F. and Merek, J. C., Ind. Eng. Chem. Res. 27, 755 (1988).Google Scholar
13. Baker, R. T. K. and Chludzinski, J. J., J. Catal. 64, 464 (1980).Google Scholar
14. Rodriguez, N. M., J. Mater. Res. 8 (12), 3233 (1993).Google Scholar
15. Baker, R. T. K., Catal. Rev. Sci. Eng. 19, 161 (1979).Google Scholar
16. Yang, R. T. and Chen, J. P., J. Catal. 115, 52 (1989).Google Scholar
17. Owens, W.T., Rodriguez, N. M. and Baker, R. T. K., J. Phys. Chem. 96, 5048 (1992).Google Scholar
18. Baker, R. T. K., in Carbon and Coal Gasification, edited by Figueiredo, J. L. and Moulijn, J.A., NATO ASI Series, No 105, (Martinus Nijhoff Publishers 1986), pp. 231268.Google Scholar
19. Tsang, S.C., Harris, P. J. F., and Green, M. L. H., Nature 362, 520 (1993).Google Scholar
20. Pang, L. S. K., Saxby, J. D. and Chatfield, S. P., J. Phys. Chem. 97, 6941 (1993).Google Scholar
21. Rodriguez, N. M., Kim, M. S. and Baker, R. T. K., J. Catal. 144, 93 (1993).Google Scholar