Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-21T11:10:03.912Z Has data issue: false hasContentIssue false

Carrier Transport in Ordered and Disordered In0.53Ga0.47As

Published online by Cambridge University Press:  10 February 2011

R. K. Ahrenkiel
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401
S. P. Ahrenkiel
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401
D. J. Arent
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401
J. M. Olson
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401
M. Wanlass
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401
Get access

Abstract

Ga0.47In0.53As films are grown by metal-organic chemical vapor deposition (MOCVD) on InP substrates and are lattice-matched to the latter. Studies have shown that by varying growth temperature and lattice orientation, some ordering of the metal sublattice is produced. In this work, we studied the excess carrier lifetimes in ordered and disordered films using an ultra-high frequency photoconductive decay measurement technique (UHFPCD). Excitation was provided by a Q-switched YAG laser (1.064 μs wavelength) with pulses of about 5 ns full width half maximum (FWHM). The transient photoconductive decay (PCD) signals varied markedly with the degree of ordering of the specific film. As description of the experimental results of these UHFPCD measurements follow.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ueda, O., Hoshino, M., Takechi, M., Ozeki, M., Kato, T. and Matsumoto, T., J. Appl. Phys. 68, p. 4268 (1990).Google Scholar
2. Seong, T.Y., Norman, A.G., Booker, G.R. and Cullis, A.G., J. Appl. Phys. 75, p. 12 (1994).Google Scholar
3. Su, L.C., Pu, S.T., Stringfellow, G.B., Christen, J., Selber, H. and Bimberg, D., J. Electron. Mater. 23, p. 125 (1994).Google Scholar
4. Ahrenkiel, R.K., AIP Conference Proceedings 353, p. 161 (1996).Google Scholar
5. Ahrenkiel, R.K., Wangensteen, T., Al-Jassim, M.M., Wanlass, M. and Coutts, T., AIP Conference Proceedings 321, p. 412 (1994).Google Scholar
6. Arent, D.J., Bertness, K.A., Bode, M., Kurtz, S.R. and Olson, J.M., Appl. Phys. Lett. 62, p. 1806 (1993).Google Scholar
7. Ahrenkiel, S.P., Ahrenkiel, R.K. and Arent, D. (presented at this conference).Google Scholar
8. Pankove, J., Optical Processes in Semiconductors, Dover Publications Inc., New York, 1957.Google Scholar
9. Samuelson, L., Pistol, M.E. and Nilsson, S., Phys. Rev. B 33, p. 8776 (1986).Google Scholar
10. Fouquet, J.E., Robbins, V.M., Rosner, J. and Blum, O., Appl. Phys. Lett. 57, p. 1566 (1990).Google Scholar
11. Delong, M.C., Ohlsen, W.D., Vioh, I., Taylor, P.C., and Olson, J.M., J. Appl. Phys. 70, p. 2780 (1991).Google Scholar
12. Wang, T.Y. and Stringfellow, G.B., J. Appl. Phys. 67, p. 344 (1990).Google Scholar
13. Ahrenkiel, R.K., Keyes, B.M. and Dunlavy, D.J., J. Appl. Phys. 70, 225 (1991).Google Scholar
14. Ahrenkiel, R.K., Keyes, B.M. and Levi, D.L., Proceedings of the Photovoltaic Solar Energy Conference, H.S. Stephens & Associates, U.K., 1996, p. 914.Google Scholar