Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-28T01:24:34.612Z Has data issue: false hasContentIssue false

Carrier relaxation and recombination in InGaN/GaN quantum heterostructures probed with time-resolved cathodoluminescence

Published online by Cambridge University Press:  10 February 2011

Xingang Zhang
Affiliation:
Department of Materials Science and Engineering, University of Southern California, Los Angeles, CA 90089-0241
D. H. Rich
Affiliation:
Department of Materials Science and Engineering, University of Southern California, Los Angeles, CA 90089-0241
J. T. Kobayashi
Affiliation:
Department of Materials Science and Engineering, University of Southern California, Los Angeles, CA 90089-0241
N. P. Kobayashi
Affiliation:
Department of Materials Science and Engineering, University of Southern California, Los Angeles, CA 90089-0241
P. D. Dapkus
Affiliation:
Also with Department of Electrical Engineering/Electrophysics, University of Southern California, Los Angeles, CA 90089-0271
Get access

Abstract

Spatially, spectrally, and temporally resolved cathodoluminescence (CL) techniques have been employed to examine the optical properties and kinetics of carrier relaxation in InGaN/GaN heterostructure and single quantum well (QW) samples. CL images of the QW sample revealed a spotty cellular pattern indicative of local In compositional fluctuations on a scale of < 100 nm. The compositional variations induce local potential fluctuations, resulting in a strong lateral excitonic localization at InN-rich regions in the InGaN QW layer. Time-resolved CL measurements revealed a lateral spatial variation in the luminescence decay time which correlates with the spatial variation in the luminescence efficiency. A reduced lifetime is observed at boundary regions between centers of excitonic localization. A detailed time-resolved CL study shows that carriers generated in the boundary regions will diffuse toward and recombine at the InN-rich centers. An electron beam induced modification of the emission spectra was observed for InGaN/GaN heterostructure samples. Exposure to the e-beam resulted in a shift in the near-band gap emission to higher energies with a simultaneous increase in the emission intensity. These result are interpreted as a modification of the surface passivation through e-beam exposure and carbidization of the surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S., Yamada, T., and Mukai, T., Jpn. J. Appl. Phys. 1 134, L1332 (1994).Google Scholar
2. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Appl. Phys. Lett. 68, 3269 (1996).Google Scholar
3. Akasaki, I., Sota, S., Sakai, H., Tanaka, T., Koike, M., and Amano, H., Electron. Lett. 32, 1105 (1996).Google Scholar
4. Sun, C.–K., Keller, S., Wang, G., Minsky, M. S., Bowers, J. E., and DenBarrs, S. P., Appl. Phys. Lett. 69, 1936 (1996).Google Scholar
5. Jeon, E. S., Kozalov, V., Song, Y.–K., Vertikov, A., Kuball, M., Nurmikko, A. V., Liu, H., Chen, C., Kern, R. S., Kuo, C. P., and Craford, M. G., Appl. Phys. Lett. 69, 4194 (1996).Google Scholar
6. Narukawa, Y., Kawakami, Y., Fujita, S., and Fujita, S., Phys. Rev. B 55, R1938 (1997).Google Scholar
7. Narukawa, Y., kawakami, Y., Funato, M., Fujita, S., and Fujita, S., Appl. Phys. Lett. 70, 981 (1997).Google Scholar
8. Chichibu, S., Azuhata, T., Sota, T. and Nakamura, S., Appl. Phys. Lett. 69, 4188 (1996).Google Scholar
9. Chichibu, S., Wada, K., and Nakamura, S., Appl. Phys. Lett. 71, 2346 (1997).Google Scholar
10. Kobayashi, J. T., Kobaysahi, N. P., Dapkus, P. D., Zhang, X. and ch, D. H.R, Mater. Res. Soc. Symp. Proc. Vol.468. 187 (1997).Google Scholar
11. Rich, D. H. et al., Phys. Rev. B 43, 6836 (1991).Google Scholar
12. H Lin, T., Rich, D. H., Konkar, A., Chen, P., and Madhukar, A., J. Appl. Phys. 81, 3186 (1997), and references therein.Google Scholar
13. Lester, S. D., Ponce, F. A., Craford, M. G. and Steigerwald, D. A., Appl. Phys. Lett. 66, 1249 (1995).Google Scholar
14. Wickenden, A. E., Beadie, G., Koleske, D. D., Rabinovich, W. S., and Freitas, J. A., Mater. Res. Soc. 449, 531 (1997).Google Scholar
15. Qiu, C. H. and Pankove, J. I., Appl. Phys. Lett. 70, 1983 (1997)Google Scholar
16. Joshkin, V. A., Roberts, J. C., Piner, E. L., Behbehani, M. K., McIntosh, F. G., and Bedair, S. M., Appl. Phys. Lett. 71, 234 (1997).Google Scholar
17.. Shmagih, K., Muth, J. F., Kolbas, R. M., Dupuis, R. D., Grudowski, P. A., Eiting, C. J., Park, J., Shelton, B. S. and Lambert, D. J. H., Appl. Phys. Lett. 71, 1382 (1997).Google Scholar