Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T01:29:53.358Z Has data issue: false hasContentIssue false

Carbon Dioxide – Dilated Block Copolymer Templates for Nanostructured Materials

Published online by Cambridge University Press:  10 February 2011

Garth D. Brown
Affiliation:
Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003
James J. Watkins
Affiliation:
Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003
Get access

Abstract

Periodic polymer/metal (Pt or Ag) and polymer/semiconductor (PbS) nanocomposites are prepared using block copolymers dilated with carbon dioxide (CO2) as templates. Specifically, organometallic compounds (metal precursors) are dissolved into supercritical CO2 and infused into polystyrene-block-poly(acrylic acid) or polystyrene-block-poly(vinylpyridine) copolymers. Upon infusion, the acid or pyridine block selectively binds the metal precursor. The excess is removed from the polystyrene phase by subsequent CO2 extraction. Reduction of the bound organometallic with hydrogen or hydrogen sulfide yields the desired metal or semiconductor clusters, which are confined to the precursor-binding domain and remain positioned on the copolymer lattice. The composites are characterized by transmission electron microscopy, x-ray scattering and electron diffraction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Rettz, M. T.; Helbig, W.; Quaiser, S. A.; Stimming, U.; Breuer, N.; Vogel, R.Science 1995, 267, 367–.Google Scholar
[2]Moffitt, M.; Eisenberg, A.Chemistry of Materials 1995, 7, 1178–.Google Scholar
[3]Forster, S.Ber. Bunsenges. Phys. Chem. 1997, 101, 1671–.Google Scholar
[4]Antonietti, M.; Thunemann, A.; Wenz, E. Colloid Polymer Science 1996, 274, 795–.Google Scholar
[5]Antonietti, M.; Heinz, S.; Schmidt, M.; Rosenauer, C. Macromolecules 1994, 27, 3276-2381.Google Scholar
[6]Mayer, A. B. R.; Mark, J. E. Colloid Polymer Science 1997, 275.Google Scholar
[7]Moller, M.; Lenz, R. W.Makromol Chemistry 1989, 190, 1153-0068.Google Scholar
[8]Chan, Y. N.C.; Craig, G. S. W.; Schrock, R.R.; Cohen, R. E.Chemistry of Materials 1992, 4, 885–.Google Scholar
[9]Cummins, C. C.; Schrock, R. R.; Cohen, R. E.Chemistry of Materials 1992, 4, 27–.Google Scholar
[10]Sankaran, V.; Cummins, C.C.; Schrock, R. R.; Cohen, R. E.; Silbey, R. J.Journal of the American Chemical Society 1990, 112, 6858–.Google Scholar
[11] Yue, J.; Cohen, R. E.Supramolecular Science 1994, 1, 117–.Google Scholar
[12] Yue, J.; Sankaran, V.; Cohen, R. E.; Schrock, R. R.Journal of the American Chemical Society 1993, 115, 4409–.Google Scholar
[13]Ciebien, J. F.; Clay, R. T.; Sohn, B. H.; Cohen, R. E.New Journal of Chemistry 1998, 23, 685–.Google Scholar
[14]Ciebien, J. F.; Cohen, R. E.; Duran, A. Supramolecular Science 1998,5,31–.Google Scholar
[15]Watkins, J. J.; McCarthy, T. J.Macromolecules 1995, 28, 4067–.Google Scholar
[16]Berens, A. R.; Huvard, G. S.; Richard, W. K.; Kunig, F. W.Journal of Applied Polymer Science 1992, 46, 231–.Google Scholar
[17]Chapman, B. R.; Gochanour, C. R.; Paulaitis, M. E.Macromolecules 1996, 29, 5635.Google Scholar
[18]Vogt, B. D.; Brown, G. D.; RamachandraRao, V. S.; Watkins, J. J.Macromolecules 1999, 32, 7907–.Google Scholar
[19]Watkins, J. J.; Brown, G. D.; RamachandraRao, V. S.; Pollard, M. A.; Russell, T. P.Macromolecules 1999, 32, 7737–.Google Scholar