Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-06T03:56:10.897Z Has data issue: false hasContentIssue false

Carbon and Oxide Coatings on Continuous Ceramic Fibers

Published online by Cambridge University Press:  15 February 2011

R. S. Hay
Affiliation:
Wright Lab, Materials Directorate, WPAFB, Dayton, OH
M. D. Petry
Affiliation:
UES, INC, Dayton, OH
K. A. Keller
Affiliation:
UES, INC, Dayton, OH
M. K. Cinibulk
Affiliation:
Wright Lab, Materials Directorate, WPAFB, Dayton, OH
J. R. Welch
Affiliation:
Wright State University, Dayton, OH
Get access

Abstract

Oxide - carbon multilayer coatings were continuously applied to various fibers of nominal SiC composition. A liquid-phase coating system that allows application of the coatings in a controlled atmosphere at relatively rapid rates was employed. Sugar - ammonium hydroxide solutions were used for carbon coatings, and aqueous sols were used for the oxides. Carbon was also deposited simultaneously with alumina by chemical vapor deposition of a hydrocarbon in the coating furnace. The coatings were extensively characterized by optical microscopy and TEM. Problems with embrittlement by oxide coatings and poor adherence of oxide coatings on carbon, and some possible solutions to these problems, are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gordon, J. E., The New Science of Strong Materials, Penguin Books, London, 114 (1968).Google Scholar
2. Kerans, R. J., Hay, R. S., Pagano, N. J., and Parthasarathy, T. A., Am. Cer. Soc. Bull. 68, [2] 429 (1989).Google Scholar
3. Hillig, W. B., Ann. Rev. Mater. Sci. 17, 341 (1987).Google Scholar
4. Ruble, M. and Evans, A. G., Progress in Materials Science 33, 85 (1989).Google Scholar
5. Evans, A. G. and Marshall, D. B., Acta metall. 37, [10] 2567 (1989).Google Scholar
6. Prewo, K. M. and Brennan, J. J., J. Mater. Sci. 15, 463 (1980).Google Scholar
7. Lehman, R. L. and Doughan, C. A., Comp. Sci. Tech. 37, 149 (1990).Google Scholar
8. Llorca, J. and Singh, R. N., J. Am. Ceram. Soc. 74, [11] 2882 (1991).Google Scholar
9. Mah, T., Mendiratta, M. G., Katz, A. P., and Mazdiyasni, K. S., Am. Cer. Soc. Bull. 66, [12] 304 (1987).Google Scholar
10. Chyung, K. and Dawes, S. B., Mat. Sci. Eng. A162, 27 (1993).Google Scholar
11. Cinibulk, M. K., Cer. Eng. Sci. Proc. 15, [5] 721 (1994).Google Scholar
12. Morgan, P. E. D. and Marshall, D. B., in press.Google Scholar
13. Tvergaard, V. and Hutchinson, J. W., Phil. Mag. A 70, [4] 641 (1994).Google Scholar
14. Hay, R. S., Mah, T., and Cooke, C., Cer. Eng. Sci. Proc. 15, [5] 760 (1994).Google Scholar
15. Hay, R. S., submitted to Acta metall.Google Scholar
16. Davis, J. B., Lofvander, J. P. A., and Evans, A. G., J. Am. Ceram. Soc. 76, [5] 1249 (1993).Google Scholar
17. Mah, T., Keller, K., Parthasarathy, T. A., and Guth, J., Cer. Eng. Sci. Proc. 12, [9-10] 1802 (1991).Google Scholar
18. Thouless, M. D., Sbaizero, O., Sigl, L. S., and Evans, A. G., J. Am. Ceram. Soc. 72, [4] 525 (1989).Google Scholar
19. Lackey, W. J., Hanigofsky, J. A., and Beckloff, B. N., Cer. Eng. Sci. Proc. 15, [4] 142 (1994).Google Scholar
20. Hay, R. S., Cer. Eng. Sci. Proc. 12, [7-8], 1064 (1991).Google Scholar
21. Hay, R. S. and Hermes, E. E., Cer. Eng. Sci. Proc. 11, [9-10] 1526 (1990).Google Scholar
22. Hay, R. S. and Hermes, E. E., U. S. Patent #5,217,533, June 8, 1993.Google Scholar
23. Hay, R. S., U. S. Patent #5,164,229, June 14, 1993.Google Scholar