Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-19T23:35:06.631Z Has data issue: false hasContentIssue false

Canted Magnetic Moments at the Gd (0001) Surface

Published online by Cambridge University Press:  03 September 2012

Dongqi Li
Affiliation:
Department of Physics, Syracuse University, Syracuse, NY 13244
Jiandi Zhang
Affiliation:
Department of Physics, Syracuse University, Syracuse, NY 13244
P. A. Dowben
Affiliation:
Department of Physics, Syracuse University, Syracuse, NY 13244
K. Garrison
Affiliation:
Physics Department, Brookhaven National Laboratory, Upton, NY 11973
P. D. Johnson
Affiliation:
Physics Department, Brookhaven National Laboratory, Upton, NY 11973
H. Tang
Affiliation:
Department of Physics, University of California, Irvine, CA 92717
T.G. Walker
Affiliation:
Department of Physics, University of California, Irvine, CA 92717
H. Hopster
Affiliation:
Department of Physics, University of California, Irvine, CA 92717
J.C. Scott
Affiliation:
IBM Almadén Research Center, 650 Harry Road, San Jose, CA 95120
D. Weiler
Affiliation:
IBM Almadén Research Center, 650 Harry Road, San Jose, CA 95120
D. P. Pappas
Affiliation:
IBM Almadén Research Center, 650 Harry Road, San Jose, CA 95120
Get access

Abstract

With spin polarized electron spectroscopies, we have investigated ordered Gd (0001) films deposited on W (110). The photoemission features of the gadolinium 5d surface state, the 4f levels, and the background exhibit considerable spin polarization along the same direction in the plane of the film, indicative of ferromagnetic coupling between the surface and the bulk. The 4f spin polarized photoemission data provides strong evidence that the surface 4f polarization differs from the bulk 4f polarization for Gd (000l). Our temperature dependent measurements with spin polarized secondary electron spectroscopy conclusively establishes that the surface of clean Gd (0001) possesses a perpendicular polarization component which persists to an enhanced surface Curie temperature. SMall amounts of contamination at the surface result in the disappearance of the perpendicular component and, therefore, a more perfect ferromagnetic coupling between the surface and the bulk.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Weller, D., Alvarado, S. F., Gudat, W., Schröder, K. and Campagna, M., P?ys. Rev. Lett. 54, 1555 (1985);Google Scholar
Weller, D. and Alvarado, S. F., J. Appl. Phys. 59, 2908 (1986).Google Scholar
[2] Taborelli, M., Allenspach, R., Boffa, G. and Landolt, M., Phys. Rev. Lett. 56, 2869 (1986);Google Scholar
Paul, O., Toscano, S., Hürsch, W. and Landolt, M., J. Magn. Magn. Mater. 84, L7 (1990).Google Scholar
[3] Tang, H., Weiler, D., Walker, T. G., Scott, J. C., Chappert, C., Hopster, H., Pang, A. W., Dessau, D. S., and Pappas, D. P., Phys. Rev. Lett., submitted.Google Scholar
[4] Farle, M., Berghaus, A., and Baberschke, K., Phys. Rev. B 39, 4838 (1989).Google Scholar
[5] Wu, R., Li, C., Freeman, A. J. and Fu, C. L., Phys. Rev. B 44, 9400 (1991);Google Scholar
Wu, R. and Freeman, A. J., J. Magn. Magn. Mater. 99, 81 (1991).Google Scholar
[6] Li, Dongqi, Zhang, Jiandi, Dowben, F. A., and Garrison, K., J. Phys.: Condens. Matter, 5, L73 (1993).Google Scholar
[7] Tang, H., Walker, T. G., Hopster, H., Pappas, D. P., Weller, D. and Scott, J. C., Phys. Rev. B, 47, 5047 (1993).Google Scholar
[8] Mulhollan, G. A., Garrison, K., and Erskine, J. L., Phys. Rev. Lett. 69, 3240 (1992).Google Scholar
[9] Li, Dongqi, Hutchings, C. W., Dowben, P. A., Hwang, C., Wu, R. T., Onellion, M., Andrews, A.B., and Erskine, J. L., J. Magn. Magn. Mater. 99, 85 (1991).Google Scholar
[10] Li, Dongqi, Hutchings, C. W., Dowben, P. A., Hwang, C., Wu, R. T., Onellion, M., Andrews, A. B. and Erskine, J. L., J. Appl. Phys. 70, 6062 (1991).Google Scholar
[11] Li, Dongqi, Zhang, Jiandi, Dowben, P. A. and Onellion, M., Phys. Rev. B 45, 7272 (1992).Google Scholar
[12] Li, Dongqi, Zhang, Jiandi, Dowben, P. A. and Onellion, M., Phys. Rev. B, submitted.Google Scholar
[13] Scheinfein, M. R., Pierce, D. T., Unguris, J., McClelland, J. J., Celotta, R. J. and Kelley, M. H., Rev. Sci. Instrum. 60, 1 (1989).Google Scholar
[14] Johnson, P.D., Brookes, N.B., Hulbert, S.L., KlafTky, R., Clarke, A., Sinković, B., Smith, N.V., Cellota, R., Kelley, M.H., Pierce, D.T., Scheinfein, M.R., Waclawshi, B.J., and Howells, M.R., Rev. Sci. Instrum. 63, 1902 (1992).Google Scholar
[15] Pappas, D. P., Kämper, K.-P., and Hopster, H., Phys. Rev. Lett. 634, 3179 (1990).Google Scholar
[16] Dowben, P. A., LaGraffe, D. and Onellion, M., J. Phys. Cond. Matt. 1, 6571 (1989).Google Scholar
[17] Stetter, U., Farle, M., Baberschke, K., Clark, W. G., Phys. Rev. B 45, 503 (1992).Google Scholar
[18] Barrett, S.D., Surface Science Repts. 14, 271 (1992).Google Scholar
[19] LaGraffe, D., Dowben, P. A., and Onellion, M., Phys. Rev. B 40, 3348 (1989).Google Scholar
[20] Kammerer, R., Barth, J., Gerken, F., Flödstrom, A. and Johansson, L. I., Solid Slate Commun. 41, 435 (1982).Google Scholar
[21] Weller, D. and Alvarado, S.F., Phys. Rev. B 37, 9911 (1988).Google Scholar