Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T15:04:44.523Z Has data issue: false hasContentIssue false

Boron Redistribution During Formation of Cobalt Silicides

Published online by Cambridge University Press:  25 February 2011

C. Zaring
Affiliation:
Royal Institute of Technology, Department of Solid State Electronics, P.O. Box 1298, S-164 28 Kista-Stockholm, Sweden
B. G. Svensson
Affiliation:
Royal Institute of Technology, Department of Solid State Electronics, P.O. Box 1298, S-164 28 Kista-Stockholm, Sweden
M. ÖStling
Affiliation:
Royal Institute of Technology, Department of Solid State Electronics, P.O. Box 1298, S-164 28 Kista-Stockholm, Sweden
Get access

Abstract

Redistribution of boron during the formation of the cobalt suicides Co2Si, CoSi and CoSi2 has been studied. The suicides were formed by solid state reactions of cobalt deposited on boron implanted silicon. The suicide formation was determined by Rutherford backseat tering spectrometry (RBS), and the resulting redistribution of boron was studied using secondary ion mass spectrometry (SIMS). The study shows that the atoms participating in the suicide formation diffuse in the growing suicide without any mutual interference. Boron atoms in the consumed silicon layer redistribute within the formed suicide layer and accumulate at the surface, while boron in the underlying unconsumed silicon is unaltered, and no accumulation due to snowplowing occurs at the silicide/silicon interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Shibata, T., Hieda, K., Sato, M., Konaka, M., Dang, R. L. M., and Iizuka, H., IEEE Trans. Electr. Dev. ED-29, 531 (1982)Google Scholar
[2] Ng, K. K. and Lynch, W. T., IEEE Trans. Electr. Dev. ED-34, 503 (1987)CrossRefGoogle Scholar
[3] Nicolet, M. -A., and Lau, S. S., Chapter 6 in VLSI Electronics: Microstructure Science Vol. 6, Materials and Process Characterization, Eds. Einspruch, N. G. and Larrabee, G. B., Academic Press, New York (1983), and references therein.Google Scholar
[4] White, A. E., Short, K. T., Dynes, R. C., Garno, J. P., and Gibson, J. M., Appl. Phys. Lett. 50, 95 (1987)Google Scholar
[5] Zaring, C., Jiang, H., Svensson, B. G. and Östling, M., Applied Surface Science 53, 147 (1991)Google Scholar
[6] Zaring, C., Gas, P., Svensson, B. G., Östling, M. and Whitlow, H. J., Thin Solid Films 193/194, 244 (1990)Google Scholar
[7] Gas, P., Zaring, C., Svensson, B. G., Östling, M., Whitlow, H. J., and Barge, T., Mat. Res. Soc. Symp. Proc. 187, 131 (1990)Google Scholar
[8] Ryssel, H., Muller, K., Harberger, K., Henkelmann, R., and Jahnd, F., Appl. Phys. 22, 35 (1980)Google Scholar
[9] Zaring, C., Gas, P., Svensson, B. G. and Östling, M., to be publishedGoogle Scholar
[10] Tabasky, M., Bulat, E. S., Ditchek, B. M., Sullivan, M. A. and Shatas, S. C., IEEE Trans. Electr. Dev. ED-34, 548 (1987)Google Scholar
[11] Jiang, H., Osburn, C. M., Xiao, Z. -G., McGuire, G., Rozgonyi, G. A., Patnaik, B., Parikh, N. and Swanson, M., J. Electrochem. Soc. 139, 206 (1992)CrossRefGoogle Scholar
[12] Maex, K., Ghosh, G., Delaey, L., Probst, V., Lippens, P., Van den hove, L., and De Keersmaecker, R. F., J. Mater. Res. 4, 1209 (1989)CrossRefGoogle Scholar
[13] Maex, K., De Keersmaecker, R. F., Ghosh, G., Delaey, L. and Probst, V., J. Appl. Phys. 66, 5327 (1989)Google Scholar
[14] Setton, M. and Van der Spiegel, J., J. Appl. Phys. 69, 994 (1991)Google Scholar
[15] Thomas, O., Gas, P., d'Heurle, F. M., LeGoues, F. K., Michel, A. and Scilla, G., J. Vac. Sci. Technol. A6, 1736 (1988)Google Scholar
[16] Thomas, O., Gas, P., Charai, A., LeGoues, F. K., Michel, A., Scilla, G. and d'Heurle, F. M., J. Appl. Phys. 64, 2973 (1988)Google Scholar
[17] Tsai, J. C. C., Chapter 7 in VLSI Technology, 2 edition, Ed. Sze, S. M., McGraw-Hill, New York (1988)Google Scholar
[18] Wittmer, M. and Tu, K. N., Phys. Rev. B 29, 2010 (1984)CrossRefGoogle Scholar
[19] Rockett, A., Greene, J. E., Jiang, H., Östling, M. and Petersson, C. S., J. Appl. Phys. 64, 4187 (1988)Google Scholar