Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-25T23:21:57.219Z Has data issue: false hasContentIssue false

Bonded Hydrogen Atom Participation in Metastable Defect Formation in Hydrogenated Amorphous Silicon

Published online by Cambridge University Press:  10 February 2011

G. Lucovsky
Affiliation:
Departments of Physics, Electrical and Computer Engineering, Materials Science and Engineering, and Chemistry, North Carolina State University, Raleigh, NC 27695
H. Yang
Affiliation:
Departments of Physics, Electrical and Computer Engineering, Materials Science and Engineering, and Chemistry, North Carolina State University, Raleigh, NC 27695
Get access

Abstract

This paper proposes intrinsic reaction pathways for generation of metastable defects in hydrogenated undoped or intrinsic amorphous silicon (i-a-Si:H). Since these pathways involve only silicon (Si) and hydrogen (H) atoms, this approach is valid for device grade materials in which concentrations of oxygen (0) atoms, and nitrogen-hydrogen (N-H) groups are present at concentrations below about 1019 cm−3. Ab initio calculations demonstrate that the proposed generation pathway reactions are exothermic with relatively small reaction barriers (< 0.4 eV).

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Staebler, D.L. and Wronski, C.R.: Appl. Phys. Lett. 31 (1977) 292.Google Scholar
2 Tanaka, K.: J. Non-Cryst. Solids 137&138 (1991) 1, and refs. therein.Google Scholar
3 Stutzman, M., Jackson, W.B. and Tsai, C.C.: Phys. Rev. B 34 (1986) 63.Google Scholar
4 Beckel, C. Van and Powell, M.J.: Appl. Phys. Lett. 51 (1987) 185.Google Scholar
5 Williams, M.J., Wang, C., and Lucovsky, G.: J. of Non-Cryst. Solids 137&138 (1991) 737; W. A. Turner et al.: Mater. Res. Soc. S ymp. Proc. 283 (1993) 567.Google Scholar
6 Yiping, Z. et al. : Phys. Rev. Lett. 74 (1995) 558.Google Scholar
7 Sugiyama, S., Yang, J. and Guha, S.: MRS Symp. Proc. 467 (1998) 49.Google Scholar
8 Wei, J.-H et al. Int. Conf. Solid State Devices and Materials (BCASJ, Tokyo, 1997) p. 546.Google Scholar
9 Lucovsky, G.: D. Non-Cryst. Solids 141 (1992) 241.Google Scholar
10 Lucovsky, G. and Yang, H.: MRS Symp. Proc. 467 (1998) 31.Google Scholar
11 Allan, D.C. and Joannopolous, J.D.: Physics of Hydrogenated Amorphous Silicon II, eds. Joannopolous, J.D. and Lucovsky, G. (Springer-Verag, Berlin, 1983), p5.Google Scholar
12 Walle, C.G. Van de: Phys. Rev. B 49 (1994) 4579, C.G. Van de Walle and N.H. Nickel: Phys. Rev. B 51 (1995)2636, C.GTVan de Walle and J. Neugebauer: Phys. Rev. B 52, (1995) R 11320.Google Scholar
13 Cotton, F.A. and Willenson, G.: Advanced Inorganic Chemistry (Interscience, New York, 1972) 3rd ed., Chapt. 5.Google Scholar
14 Jones, R.: Physica B 170 (1991) 181.Google Scholar
15 Davis, E.A.: J. Non-Crlyst. Solids, 198–200 (1996) 1; and refs. therein.Google Scholar
16 Jing, Z. and Whitten, J.L.: J. Chem. Phys. 98, (1993) 7466, Z. Jing, J.L. Whitten and G. Lucovs-ky: Phys. Rev. B 45 (1992) 13978.Google Scholar
17 Williams, M.J. et al. : J. Vac. Sci. Technol. A 12 (1994) 1072.Google Scholar
18 Walle, C.G. Van de: J. Non-Cryst. Solids (1998), in press.Google Scholar