Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T10:58:07.443Z Has data issue: false hasContentIssue false

Bias Annealing Effect on Hydrogen-Containing Au/N-Silicon Schottky Barrier

Published online by Cambridge University Press:  21 February 2011

M.H. Yuan
Affiliation:
Department of Physics, Peking University, Beijing 100871, P.R. China
Y.Q. Jia
Affiliation:
Department of Physics, Peking University, Beijing 100871, P.R. China
G.G. Qin
Affiliation:
Department of Physics, Peking University, Beijing 100871, and International Center for Materials Physics, Academic Sinica, Shenyang 110015, P.R.China
Get access

Abstract

Au/n-Si Schottky barrier (SB) incorporated by hydrogen has a 0.13 eV lower SB height (SBH) than that without hydrogen incorporation. For the hydrogen-containing SB, zero bias annealing (ZBA) decreases the SBH while reverse bias annealing (RBA) increases it. Besides, the ZBA and RBA cycling experiments reveal a reversible change of the SBH with in at least three cycles. The higher annealing temperature of RBA results in higher SBH. We interpret the above experimental facts as that hydrogen has an effect on metal-semiconductor interface states and then on the SBH, and both the bias on SB and temperature of annealing can influence the hydrogen effects on metal-semiconductor interface states.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pankove, J.I., Lamper, M.A., and Tang, M.L., Appl. Phys. Lett. 32, 439 (1978).Google Scholar
2. Chantre, A., Levi, A.F.J., Tung, R.T., Dautremout-Smith, W.C., and Anziowar, M., Phys. Rev. B34, 4415 (1986).Google Scholar
3. Sullivan, J.P., Graham, W.R., Tung, R.T., and Schrey, F., Appl. Phys. Lett. 62, 2804 (1993).Google Scholar
4. Jia, Y.Q. and Qin, G.G., Appl. Phys. Lett. 56, 641 (1990).Google Scholar
5. Liu, J., Ortiz, C.R., Zhang, Y., Bakhru, H., and Corbett, J. W., Phys. Rev. B44, 8918 (1991).Google Scholar
6. Jin, S.X., Wang, L.P., Yuan, M.H., Chen, J.J., Jia, Y.Q., and Qin, G.G., J. Appl. Phys. 71, 536 (1992).Google Scholar
7. Qin, G.G., Yuan, M.H.. Jin, S.X., Chen, X.S., and Wang, L.P., Materials Science Forum Vol. 83–87, 587 (1992).Google Scholar
8. Jin, S.X., Wang, H.P., Yuan, M.H., Song, H.Z., Wang, H., Mao, W.L., Qin, G.G., Ren, Z. Y., Li, B.C., Hu, X.W., and Sun, G.S., Appl. Phys. Lett. 62, 2719 (1993).Google Scholar
9. Spicer, W.E., Chye, P.W., Skeath, P.R., Su, C.Y., and Lindau, I., J. Vac. Sci. Technol. 16, 1422 (1979).CrossRefGoogle Scholar
10. Qin, G.G., Du, Y.C., Wu, J., and Yao, X.C., Materials Science Forumes 10–12, 563 (1986).Google Scholar
11. Pearton, S.J., Corbett, J.W., Shi, T. S., Appl. Phys. A 43, 153 (1987).CrossRefGoogle Scholar
12. Johnson, N.M., Doland, C., Ponce, F., Walker, J. and Anderson, G., Physica B 170, 3 (1991).CrossRefGoogle Scholar
13. Cowley, A.M. and Sze, S.M., J. Appl. Phys. 36, 3212 (1965).Google Scholar
14. QIn, G.G., in The 21st International Conference on the Physics of Semiconductors (World Scientific, 1992), p.461.Google Scholar
15. Yuan, M.H., Wang, L.P., Jin, S.X., Chen, J.J. and Qin, G.G., Appl. Phys. Lett. 58,925 (1991).Google Scholar
16. Cho, H.Y., Min, S.K., Chang, K.J. and Lee, C., Phys. Rev. B44, 13779 (1991).Google Scholar