Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-14T21:36:47.583Z Has data issue: false hasContentIssue false

The Behavior of Ion-Implanted Hydrogen in Gallium Nitride

Published online by Cambridge University Press:  15 February 2011

S. M. Myers
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056, smmyers@sandia.gov
T.J. Headley
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056, smmyers@sandia.gov
C.R. Hills
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056, smmyers@sandia.gov
J. Han
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056, smmyers@sandia.gov
G.A. Petersen
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056, smmyers@sandia.gov
C.H. Seager
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056, smmyers@sandia.gov
W.R. Wampler
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056, smmyers@sandia.gov
Get access

Abstract

Hydrogen was ion-implanted into wurtzite-phase GaN, and its transport, bound states, and microstructural effects during annealing up to 980°C were investigated by nuclear-reaction profiling, ion-channeling analysis, transmission electron microscopy, and infrared (IR) vibrational spectroscopy. At implanted concentrations vl at.%, faceted H 2 bubbles formed, enabling identification of energetically preferred surfaces, examination of passivating N-H states on these surfaces, and determination of the diffusivity-solubility product of the H. Additionally, the formation and evolution of point and extended defects arising from implantation and bubble formation were characterized. At implanted H concentrations ^0.1 at.%, bubble formation was not observed, and ion-channeling analysis indicated a defect-related H site located within the [0001] channel.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zavada, J.M., Wilson, R.G., Abernathy, C.R., and Pearton, S.J., Appl. Phys. Lett. 64, 2724 (1994).Google Scholar
2. Weinstein, M.G., Song, C.Y., Stavola, M., Pearton, S.J., Wilson, R.G., Shul, R.J., Killeen, K.P., and Ludowise, M.J., Appl. Phys. Lett. 72, 1703 (1998).Google Scholar
3. Pearton, S.J., Wilson, R.G., Zavada, J.M., Han, J., and Shul, R.J., Appl. Phys. Lett. 73, 1877 (1998).Google Scholar
4. Wampler, W.R. and Myers, S.M., MRS Internet J. Nitride Semicond. Res. 4S1, G3.73 (1999).Google Scholar
5. Seager, C.H., Myers, S.M., Petersen, G.A., Han, J., and Headley, T.J., J. Appl. Phys., in press.Google Scholar
6. Ng, T.-B., Han, J., Biefeld, R.M., and Weckwerth, M.V., J. Electron. Mater. 27, 190 (1998).Google Scholar
7. Möller, W. and Besenbacher, F., Nucl. Instrum. Meth. 168, 111 (1980).Google Scholar
8. Myers, S. M., Caskey, G. R. Jr, Rawl, D. E. Jr, and Sisson, R. D. Jr, Metall. Trans. A 14, 2261 (1983).Google Scholar
9.Ion ranges were calculated using the TRIM-90 Monte-Carlo code described by Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon, New York, 1985), and by Ziegler, J. F., 1990, unpublished.Google Scholar
10. Ziegler, J. F., Helium Stopping Powers and Ranges in All Elements (Pergamon, New York, 1977).Google Scholar
11. Ponce, F. A., Bour, D. P., Young, W. T., Saunders, M., and Steeds, J. W., Appl. Phys. Lett. 69, 337 (1996).Google Scholar
12. Daudin, B., Rouvière, J. L., and Arlery, M., Appl. Phys. Lett. 69, 2480 (1996).Google Scholar
13. Seelmann-Eggebert, M., Weyher, J. L., Obloh, H., Zimmermann, H., Rar, A., and Porowski, S., Appl. Phys. Lett. 71, 2635 (1997).Google Scholar
14. Liliental-Weber, Z., Richter, O., Washburn, J., Pakula, K., Baranowski, J., Grzegory, I., Porowski, S., and Yang, J. Y., reported at the 1998 Spring Meeting of the Materials Research Society.Google Scholar
15. Neugebauer, J. and Walle, C. G. Van de, Phys. Rev. Lett. 75, 4452 (1995).Google Scholar
16. Wright, A.F, to be published.Google Scholar
17. Liliental-Weber, Z., Kisielowski, C., Ruvimov, S., Chen, Y., Washburn, J., Grzegory, I., Bockowski, M., Jun, J., and Porowski, S., J. Electron. Mater. 25, 1545 (1996).Google Scholar
18. Stavola, M.J., private communication.Google Scholar