Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T05:26:42.706Z Has data issue: false hasContentIssue false

Barrier Inhomogeneities at Schottky Contacts: Curved Richardson Plots, Idealities, and Flat Band Barriers

Published online by Cambridge University Press:  25 February 2011

Jürgen H. Werner
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstraβe 1, 7000 Stuttgart 80, Germany
Herbert H. Güttler
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstraβe 1, 7000 Stuttgart 80, Germany
Uwe Rau
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstraβe 1, 7000 Stuttgart 80, Germany
Get access

Abstract

Evaluating either curved Richardson plots or temperature-dependent ideality data allows for a quantitative characterization of spatial inhomogeneities at Schottky contacts. Applying the two independent methods to PtSi/Si diodes we obtain a standard deviation around 70mV for the barrier fluctuations. These results agree with those from the comparison of temperature-dependent current and capacitance barriers. We discuss also flat band barrier heights which should be used if one investigates the temperature dependence of fundamental Schottky barrier heights. Their temperature coefficients depend on metallization. For epitaxial NiSi2/Si contacts on (100) oriented Si we find a strong influence of interface crystallography on the temperature coefficients.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Werner, J. H. and Guttler, H. H., J. Appl. Phys. 69, 1522 (1991)Google Scholar
[2] Werner, J. H. and Guttler, H. H., Physica Scnpta T39, 258 (1991)Google Scholar
[3] Tung, R. T., Levi, A. F. J., Sullivan, J. P., and Schrey, F., Phys. Rev. Lett. 66, 72 (1991)Google Scholar
[4] Saxena, N., Surface Science 13 151 (1969)CrossRefGoogle Scholar
[5] Tuck, B., Eftekhari, G., and de Cogan, D. M., J. Phys. D: Appl. Phys. 15, 457 (1982)Google Scholar
[6] Aboelfotoh, M. O., Phys. Rev. B39, 5070 (1989);Google Scholar
Aboelfotoh, M. O., Cros, A., Svensson, B. G., and Tu, K. N., Phys. Rev. B41, 9819 (1990)Google Scholar
[7] Aboelfotoh, M. O., J. Appl. Phys. 69, 3351 (1991)Google Scholar
[8] The (weak) voltage dependence of n can be used to deduce information on the geometrical size of the inhomogenei ties at the metal/semiconductor interface. see Rau, U., Guttler, H. H., and Werner, J. H., these proceedingsGoogle Scholar
[9] Wagner, L. F., Young, R. W., and Sugarman, A., IEEE Eletron. Dev. Lett. EDL-4, 320 (1983)Google Scholar
[10] Chin, V. W. L., Storey, J. W. V., and Green, M. A., Solid-State Electron. 32, 475 (1989); J. Appl. Phys. 68, 3470 (1990)Google Scholar
[11] Rau, U. and Werner, J. H. (unpublished)Google Scholar
[12] Werner, J. H. and Guttler, H. H. (unpublished)Google Scholar
[13] Cardona, M. and Christensen, N. E., Phys. Rev. B35, 6182 (1987)CrossRefGoogle Scholar