Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-23T07:59:11.605Z Has data issue: false hasContentIssue false

Bandgap-Engineering of HgCdTe for Two-Color Ir Detector Arrays BY Movpe

Published online by Cambridge University Press:  10 February 2011

P. Mitra
Affiliation:
Lockheed Martin Vought Systems, Dallas TX 75265-0003
F. C. Case
Affiliation:
Lockheed Martin Vought Systems, Dallas TX 75265-0003
S. L. Barnes
Affiliation:
Lockheed Martin Vought Systems, Dallas TX 75265-0003
M. B. Reine
Affiliation:
Lockheed Martin IR Imaging Systems, Lexington, MA 02173-7393
P. O'Dette
Affiliation:
Lockheed Martin IR Imaging Systems, Lexington, MA 02173-7393
S. P. Tobin
Affiliation:
Lockheed Martin Vought Systems, Dallas TX 75265-0003
Get access

Abstract

Recent results on MOVPE growth of multilayer two-color HgCdTe detectors, for simultaneous and independent detection of medium wavelength (MW, 3–5 μm) and long wavelength (LW, 8–12 μm) bands, are reported. The structures are grown in situ on lattice matched (100) CdZnTe in the double-heterojunction p-n-N-P configuration. A barrier layer is placed between the LW and MW absorber layers to prevent diffusion of MW photocarriers into the LW junction and thereby eliminate spectral crosstalk. X-ray double crystal rocking curve widths are ∼ 45 arc-secs, indicating good epitaxial quality. SIMS depth profile measurements of these 28 μm thick structures show well-defined alloy compositions, and arsenic and iodine doping. SIMS data on a series of thirteen films show that good run-to-run repeatability is obtained on thicknesses, compositions, and dopant levels with values close to the device design targets. Depth profile of etch pits through the thickness of the films show etch pit densities in the range of 8×105-5×106 cm−2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Reine, M.B., Norton, P.W., Starr, R., Weiler, M.H., Kestigian, M., Musicant, B.L., Mitra, P., Schimert, T.R., Case, F.C., Bhat, I.B., Ehsani, H. and Rao, V., J. Electron. Mater. 24 669 (1995).Google Scholar
2. Rajavel, R.D., Jamba, D.M., Jensen, J.E., Wu, O.K., Beau, C. Le, Wilson, J.A., Patten, E., Kosai, K., Johnson, J., Rosbeck, J., Goetz, P., and Johnson, S.M., J. Electron. Mater. 26 476 (1997).Google Scholar
3. Mitra, P., Barnes, S.L., Case, F.C., Reine, M.B., O'Dette, P., Starr, R., Hairston, A., Kuhler, K., Weiler, M.H. and Musicant, B.L., J. Electron. Mater. 26 482 (1997).Google Scholar
4. Maxey, C.D., Jones, C.L., Metcalfe, N.E., Catchpole, R., Houlton, M.R., White, A.M., Gordon, N.T. and Elliott, C.T., J. Electronic Mat. 25 1276 (1996).Google Scholar
5. Mitra, P., Tyan, Y. L., Schimert, T. R., and Case, F. C., Appl. Phys. Lett. 65 195 (1994).Google Scholar
6. Mitra, P., Schimert, T.R., Case, F.C., Barnes, S.L., Reine, M.B., Starr, R., Weiler, M.H., and Kestigian, M., J. Electronic Mat. 24 1077 (1995).Google Scholar
7. Bevan, M.J., Chen, M.C. and Shih, H.D., Appl. Phys. Lett. 67 3750 (1995).Google Scholar
8. Mitra, P., Tyan, Y.L., Case, F.C., Starr, R. and Reine, M.B., J. Electronic Mat. 25 1328 (1996).Google Scholar
9. Mullin, J. B. and Irvine, S. J. C., Prog. Crystal Growth and Charact. 29 217 (1994).Google Scholar
10. Sheng, J., Wang, L., Lux, G.E. and Gao, Y., J. Electron. Mater. 26 588 (1997).Google Scholar
11. Rajavel, R. D., Jamba, D.M., Wu, O.K., Jensen, J.E., Wilson, J.A., Patten, E.A., Kosai, K., Goetz, P., Chapman, G.R. and Radford, W.A., J. Crystal Growth 175/176 653 (1997).Google Scholar
12. Hahnert, I. and Schenk, M., J. Crystal Growth 101 251 (1990).Google Scholar