Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-19T08:34:50.432Z Has data issue: false hasContentIssue false

Band alignment at CdS/wide-band-gap Cu(In,Ga)Se2 hetero-junction by using PES/IPES

Published online by Cambridge University Press:  01 February 2011

S.H. Kong
Affiliation:
Kagoshima University, Venture Business Laboratory, 1-21-40 Koorimoto, Kagoshima, 890-0065, Japan
H. kashiwabara
Affiliation:
Kagoshima University, Department of Nano Structure and Advanced Materials, 1-21-40 Koorimoto, Kagoshima, 890-0065, Japan
K. Ohki
Affiliation:
Kagoshima University, Department of Nano Structure and Advanced Materials, 1-21-40 Koorimoto, Kagoshima, 890-0065, Japan
K. Itoh
Affiliation:
Kagoshima University, Department of Nano Structure and Advanced Materials, 1-21-40 Koorimoto, Kagoshima, 890-0065, Japan
T. Okuda
Affiliation:
Kagoshima University, Department of Nano Structure and Advanced Materials, 1-21-40 Koorimoto, Kagoshima, 890-0065, Japan
S. Niki
Affiliation:
National Institute of Industrial Science and Technology, 1-1-1 Umezono Tsukuba, 305-8568, Japan
K. Sakurai
Affiliation:
National Institute of Industrial Science and Technology, 1-1-1 Umezono Tsukuba, 305-8568, Japan
S. Ishizuka
Affiliation:
National Institute of Industrial Science and Technology, 1-1-1 Umezono Tsukuba, 305-8568, Japan
N. Terada
Affiliation:
Kagoshima University, Department of Nano Structure and Advanced Materials, 1-21-40 Koorimoto, Kagoshima, 890-0065, Japan National Institute of Industrial Science and Technology, 1-1-1 Umezono Tsukuba, 305-8568, Japan
Get access

Abstract

Direct characterization of band alignment at chemical bath deposition (CBD)-CdS/Cu0.93 (In1-xGax)Se2 has been carried out by photoemission spectroscopy (PES) and inverse photoemission spectroscopy (IPES). Ar ion beam etching at the condition of the low ion kinetic energy of 350 eV yields a removal of surface contamination as well as successful measurement of the intrinsic properties of each layer and the interfaces. Especially interior regions of the wide gap CIGS layers with a band gap of 1.4 ∼ 1.6 eV were successfully exposed. IPES spectra revealed that the conduction band offset (CBO) at the interface region of the wide gap CIGS with x = 0.60 and 0.75 was negative, where the conduction band minimum of CdS was lower than that of CIGS. It was also observed that the energy spacing between conduction band minimum (CBM) of CdS layer and valence band maximum (VBM) of Cu0.93(In0.25Ga0.75)Se2 layer at interface region was no wider than that of the interface over the Cu0.93(In0.60Ga0.40)Se2 layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Voorwinden, G., Kiese, R., and Powalla, M., Thin Solid Films 431-432, 538 (2003).Google Scholar
2 Contreras, M. A., Tuttle, J., Gabor, A., Tennant, A., Ramanathan, K., Asher, S., Franz, A., Keane, J., Wang, L., and Noufi, R., Sol. Energy Mater. Sol. Cells 41/42, 231 (1996).Google Scholar
3 Minemoto, T., Hashimoto, Y., Kolahi, W. S., Satoh, T., Negmi, T., Takakura, H., and Hamakawa, Y., Sol. Energy Mater. Sol. Cells 75, 121 (2003).Google Scholar
4 Herberholz, R., Nadenau, V., Ruhle, U., Koble, C., Schock, H. W., and Dimmeler, B., Sol. Energy Mater. Sol. Cells 49, 227 (1997).Google Scholar
5 Siebentritt, S., Thin Solid Films 403-404, 1 (2002).Google Scholar
6 Ramanathan, K., Contreras, M. A., Perkins, C. L., Asher, S., Hasoon, F. S., Keane, J., Young, D., Romero, M., Metzger, W., Ward, J., and Duda, A., Prog. Photovoltaics. Res. Appl. 11, 225 (2003).Google Scholar
7 Minemoto, T., Hashimoto, Y., Satoh, T., Negami, T., Takakura, H., and Hamakawa, Y., J. Appl. Phys. 89, 8327 (2001).Google Scholar
8 Schmid, D., Ruckh, M., and Schock, H. W., Sol. Energy Mater. Sol. Cells 41/42, 281 (1996).Google Scholar
9 Rau, U., and Schock, H. W., Appl. Phys. A 69, 131 (1999).Google Scholar
10 Schulmeyer, T., Hunger, R., Klein, A., Jaegermann, W., and Niki, S., Appl. Phys. Lett. 84, 3067 (2004).Google Scholar
11 Kronik, L., Burstein, L., Leibovitch, M., Shapira, Y., Gal, D., Moons, E., Beier, J., Hodes, G., Cahen, D., Hariskos, D., Klenk, R., and Schock, H.W., Appl. Phys. Lett. 67, 1405 (1995).Google Scholar
12 Morkel, M., Weinhardt, L., Lohmuller, R., Heske, C., Umbach, E., Riedl, W., Zweigart, S., and Karg, F., Appl. Phys. Lett. 79, 4482 (2001).Google Scholar
13 Terada, N., Widodo, R. T., Itoh, K., Kong, S. H., Kashiwabara, H., Okuda, T., Obara, K., Niki, S., Sakurai, K., Yamada, A., and Ishizuka, S., Thin Solid Films (in press).Google Scholar
14 Sakurai, K., Hunger, R., Scheer, R., kaufmann, C. A., Yamada, A., Baba, T., Kimura, Y., Matsubara, K., Fons, P., Nakanishi, H., and Niki, S., Prog. Photovoltaics. Res. Appl. 12, 131 (2003).Google Scholar
15 Tuttle, J. R., Contreras, M. A., Bode, M. H., Niles, D., Albin, D. S., Matson, R., Gabor, A. M., Tennant, A., and Noufi, R., Appl. Phys. Lett. 77, 1 (1995).Google Scholar
16 Canava, B., Vigneron, J., Etcheberry, A., Guimard, D., Grand, P. P., Guillemoles, J.F., Lincot, D., Ould, S. Hamatly, Saad, Djebbour, Z., and Mencaraglia, D., Thin Solid Films 431-432, 289 (2003).Google Scholar
17 Padam, G. K., Malhotra, G. and Gupta, S. K., Solar Energy Mater. 22, 303 (1991).Google Scholar
18 Cahen, D. and Noufi, R., Sol. Cells 30, 53 (1991).Google Scholar
19 Dirnstorfer, I., Burkhardt, W., Kriegseis, W., Osterreicher, I., Alves, H., Hofmann, D. M., Ka, O., Polity, A., Meyer, B. K. and Braunger, D., Thin Solid Films 361-362, 400 (2000).Google Scholar