Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-19T14:22:05.111Z Has data issue: false hasContentIssue false

Back-Doping Design in AlGaN/GaN Heterostructure Field-Effect Transistors for High-Power Applications

Published online by Cambridge University Press:  21 March 2011

Narihiko Maeda
Affiliation:
NTT Basic Research Laboratories, NTT Corporation 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243-0198, Japan
Kotaro Tsubaki
Affiliation:
NTT Basic Research Laboratories, NTT Corporation 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243-0198, Japan
Tadashi Saitoh
Affiliation:
NTT Basic Research Laboratories, NTT Corporation 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243-0198, Japan
Naoki Kobayashi
Affiliation:
NTT Basic Research Laboratories, NTT Corporation 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243-0198, Japan
Get access

Abstract

A novel doping design has been proposed that yields high two-dimensional electron gas (2DEG) densities in the AlGaN/GaN heterostructure field-effect transistors (HFETs) even when the AlGaN barrier layers are designed to be very thin. In the novel doping design, an asymmetric double-heterostructure is employed, and donor atoms are doped not only in the surface-side AlGaN layer but also in the underlying AlGaN layer. In this structure, electrons are efficiently supplied also from the back-doped AlGaN barrier layer to the GaN channel, with the help of the negative polarization charges at the heterointerface between the GaN channel and the underlying AlGaN barrier layer. High 2DEG densities can thus be obtained. Moreover, relatively high 2DEG mobilities can be obtained for high 2DEG densities, because back-doped donor atoms are sufficiently remote from the position of the 2DEG so that the 2DEG is less subjected to the ionized impurity scattering due to the relevant donor atoms. By using this back-doping design, a very high 2DEG density of 2.8x1013 cm-2 (2DEG mobility is 850 cm2/Vs) has been obtained at 300 K in the Al0.3Ga0.7N/GaN HFET whose barrier layer (Al0.3Ga0.7N) is as thin as 120 Å. Thus, the back-doping design is effective to obtain high 2DEG densities in the HFETs with thin barrier layers, and promising for high-power applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Khan, M.A., Chen, Q., Shur, M.S., Mcdermott, B.T., and Higgins, J.A.: IEEE Electron Device Lett. 17, 325 (1996).Google Scholar
2. Binari, S.C., Redwing, J. M., Kelner, G., and Kruppa, W.: Electron. Lett. 33, 242 (1997).Google Scholar
3. Wu, Y. F., Keller, B. P., Fini, P., Keller, S., Jenkins, T. J., Kehias, L. T., Denbaars, S. P., and Mishra, U. K.: IEEE Electron Device Lett. 19, 50 (1998).Google Scholar
4. Mishra, U. K., Wu, Y. F., Keller, B. P., Keller, S., and Denbaars, S. P.: IEEE Trans. Microwave Theory Tech. 46, 756 (1998).Google Scholar
5. Sheppard, S. T., Doverspike, K., Pribble, W. L., Allen, S. T., Palmour, J. W., Kehias, L. T., and Jenkins, T. J.: IEEE Electron Dev. Lett. 20, 161 (1999).Google Scholar
6. Kunihiro, K., Kasahara, K., Takahashi, Y., and Ohno, Y.: Ext. Abst. Int. Conf. Solid State Devices and Materials, Tokyo, 1999, 208 (Academic Societies Japan, Tokyo, 1999).Google Scholar
7. Khan, M. A., Shur, M. S., Kuznia, J. N., Chen, Q., Burm, J. and Schaff, W.: Appl. Phys. Lett. 66, 1083 (1995).Google Scholar
8. Gaska, R., Chen, Q., Yang, J., Osinsky, A., Khan, M. A., and Shur, M. S.: IEEE Electron Device Lett. 18, 492 (1997).Google Scholar
9. Daumiller, I., Kirchner, C., Kamp, M., Ebeling, K. J., Pond, L., Weitzel, C. E. and Kohn, E.: Proc. of Device Research Conf. Virginia, 1998, 114 (Publishing Services, IEEE, New York, 1998).Google Scholar
10. Maeda, N., Saitoh, T., Ttsubaki, K., Nishida, T., and Kobayashi, N.: Jpn. J. Appl. Phys. 38, L987 (1999).Google Scholar
11. Egawa, T., Ishikawa, H., Umeno, M., and Jimbo, T.: Appl. Phys. Lett. 76, 121 (2000).Google Scholar
12. Maeda, N., Nishida, T., Kobayashi, N., and Tomizawa, M.: Appl. Phys. Lett. 73, 1856 (1998).Google Scholar
13. Shen, B., Someya, T, and Arakawa, Y.: Appl. Phys. Lett. 76, 2746 (2000).Google Scholar
14. Hiroki, M., Maeda, N., and Kobayashi, N.: to be published in J. of Cryst. Growth (2002).Google Scholar