Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-23T16:09:05.722Z Has data issue: false hasContentIssue false

Atomistic Modeling of Void Growth and Coalescence in Ni+H

Published online by Cambridge University Press:  15 February 2011

B.P. Somerday
Affiliation:
Sandia National Laboratories, PO Box 969, MS 9402, Livermore, CA, 94550, USA
P.D. Pattillo II
Affiliation:
Dept of Theoretical and Applied Mechanics, Univ of Illinois 61801, USA
M.F. Horstemeyer
Affiliation:
Sandia National Laboratories, PO Box 969, MS 9402, Livermore, CA, 94550, USA
M.I. Baskes
Affiliation:
Los Alamos National Laboratory, MST-8, MS G755, Los Alamos, NM, 87545, USA
Get access

Abstract

Finite strain rate atomistic simulations were conducted on Ni and Ni+H lattices containing voids to better understand the dislocation-scale mechanisms of void growth and coalescence and how hydrogen affects these damage processes. Void growth is governed by dislocations that nucleate at the void surface to transport mass away from the void as well as dislocations arriving at the void from the lattice exterior to deposit vacancies and accommodate void-surface expansion. Hydrogen can retard void growth when large local hydrogen concentrations impede dislocation nucleation and propagation at the void surface. The formation of hydrogen gas molecules in the void interior does not necessarily aid void growth. Pressure in small voids may be mitigated by the mutual interaction of hydrogen molecules and the interaction of molecules with the void surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. VanStone, R. H., Cox, T. B., Low, J.R., and Psioda, J. A., Int. Met. Rev. 30, p. 157 (1985).Google Scholar
2. Garrison, W.M. and Moody, N. R., J. Phys. Chem. Solids 48, p. 1035 (1987).Google Scholar
3. Wilsdorf, H. G. F., Mater. Sci. Eng. 59, p. 1 (1983).Google Scholar
4. Thompson, A. W. and Bernstein, I. M., in Advances in Research on the Strength and Fracture of Materials, edited by Taplin, D.M.R. (Pergamon Press 2A, New York 1977), pp. 249254.Google Scholar
5. Thompson, A. W., Met. Trans. 5, p. 1855 (1974).Google Scholar
6. Thompson, A. W. and Wilcox, B. A., Scripta Metall. 6, p. 689 (1972).Google Scholar
7. Smith, G. C., in Hydrogen in Metals, edited by Bernstein, I.M. and Thompson, A.W. (ASM, Metals Park, OH 1974), pp. 485513.Google Scholar
8. Daw, M. S., Foiles, S. M., and Baskes, M. I., Mat. Sci. Rep. 9, p. 251 (1993).Google Scholar
9. Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, p. 6443 (1984).Google Scholar
10. Angelo, J. E., Moody, N. R., and Baskes, M. I., Modelling Simul. Mat. Sci. Eng. 3, p. 289 (1995).Google Scholar
11. Baskes, M. I., Angelo, J. E., and Moody, N. R., in Hydrogen Effects in Materials, edited by Thompson, A.W. and Moody, N.R. (TMS, Warrendale, PA 1996), pp. 7790.Google Scholar
12. Baskes, M. I., Sha, X., Angelo, J. E., and Moody, N. R., Modelling Simul. Mat. Sci. Eng. 5, p. 651 (1997).Google Scholar
13. Windle, A. H. and Smith, G. C., Met. Sci. J. 2, p. 187 (1968).Google Scholar
14. Birnbaum, H.K., Robertson, I.M., Sofronis, P., and Teter, D., in Corrosion-Deformation Interactions CDI '96, edited by Magnin, T. (The Institute of Materials, London 1997), pp. 172195.Google Scholar
15. Lynch, S. P., Acta Metall. 36, p. 2639 (1988).Google Scholar
16. Porter, D. A. and Easterling, K. E., Phase Transformations in Metals and Alloys, Chapman & Hall, London, 1992, pp. 142171.Google Scholar
17. Thompson, A. W., in Effect of Hydrogen on Behavior of Materials, (Metallurgical Society of AIME, Warrendale, PA 1976), pp. 467479.Google Scholar
18. Courtney, T. H., Mechanical Behavior of Materials. McGraw-Hill, New York, 1990, p. 83.Google Scholar