Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T20:37:52.762Z Has data issue: false hasContentIssue false

Atomistic Character of Nanocrystalline and Mixed Phase Silicon

Published online by Cambridge University Press:  01 February 2011

R. Biswas
Affiliation:
Department of Physics and Astronomy, Microelectronics Research Center and Ames Laboratory-USDOE, Iowa State University, Ames, Iowa 50011
B. C. Pan
Affiliation:
Department of Physics and Astronomy, Microelectronics Research Center and Ames Laboratory-USDOE, Iowa State University, Ames, Iowa 50011 Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
Get access

Abstract

Materials grown close to the phase boundary of amorphous and microcrystalline growth have the best electronic properties for solar cells. Systematic molecular dynamics methods have generated such nano-crystalline silicon, consisting of a mixed phase of nano-crystallites in an amorphous matrix, using an embedding method. An excess density of H resides on the surface of the nanocrystallites. The structure of this heterogeneous phase will be characterized by atomic distribution functions and structure factors. The electronic band structure of smaller models of nanocrystalline silicon reveals no midgap states and is similar to a-Si:H. There is a highly strained region surrounding the crystallites. The presence of localized strain region may increase the stability of the material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Meier, J., Fluckiger, R., Keppner, H., Shah, A., Appl. Phys. Lett. 65, 860 (1994).Google Scholar
[2] Schropp, R.E.I., Xu, Y., Iwanicko, E., Zacharia, G., and Mahan, A. H., MRS Symp. Proc. 715 623 (2002).Google Scholar
[3] Koh, J., Lee, Y., Fujiwara, H., Wronski, C.R., and Collins, R.W., Appl. Phys. Lett. 73, 1526 (1998). A. S. Ferlauto, R. J. Koval, C. R. Wronski and R. W. Collins, Appl. Phys. Lett. 80, 2666 (2002).Google Scholar
[4] Wronski, C. R., Pearce, J. M., Koval, R. J., Niu, X., Ferlauto, A. S., Koh, J. and Collins, R. W., Proceedings MRS 715, 459 (2002).Google Scholar
[5] Tsu, D.V., Chao, B.S., and Ovshinsky, S.R., Guha, S. and Yang, J., Appl. Phys. Lett. 71, 1317(1997).Google Scholar
[6] Kamei, T., P.Stradins and Matsuda, A., Appl. Phys. Lett. 74, 1707 (1999).Google Scholar
[7] Lubianiker, Y. and Cohen, J. D., Jin, H-C., and Abelson, J. R., Phys. Rev. B 60, 4434 (1999).Google Scholar
[8] Han, D., Baugh, J. and Yue, G., Phys. Rev. B 62, 7169 (2000).Google Scholar
[9] Silva, C. R. S. da and Fazzio, A., Phys. Rev. B 64, 075301 (2001).Google Scholar
[10] Biswas, R., Pan, B.C. and Ye, Y. Y., Phys. Rev. Lett. 88, 205502 (2002).Google Scholar
[11] Biswas, R. and Pan, B. C., Appl. Phys. Lett. 72, 371 (1998).Google Scholar
[12] Hansen, U. and Vogl, P., Phys. Rev. B 57, 13295 (1998).Google Scholar
[13] Postol, T. A. et al, Phys. Rev. Lett. 45, 648 (1980).Google Scholar
[14] Kwon, D., Chen, C.C.. Cohen, J. D., Jin, H.C., Hollar, E., Robertson, I. and Abelson, J. R., Phys. Rev. B 60, 4442 (1999).Google Scholar
[15] Lord, K., Yan, B., Yang, J. and Guha, S., Appl. Phys. Lett. 79, 3800 (2001).Google Scholar
[16] Yang, J., Lord, K., Yan, B., Banerjee, A., Guha, S., Han, D. and Wang, K., MRS 715, 601 (2002).Google Scholar