Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-26T23:35:17.300Z Has data issue: false hasContentIssue false

Atomic-scale simulations of radiation effects in GaN and carbon nanotubes

Published online by Cambridge University Press:  01 February 2011

K. Nordlund
Affiliation:
Accelerator Laboratory, P.O.Box 43, FIN-00014 University of Helsinki, Finland
J. Nord
Affiliation:
Accelerator Laboratory, P.O.Box 43, FIN-00014 University of Helsinki, Finland
A. V. Krasheninnikov
Affiliation:
Accelerator Laboratory, P.O.Box 43, FIN-00014 University of Helsinki, Finland
K. Albe
Affiliation:
Institut für Materialwissenschaft, TU Darmstadt, D-64287 Darmstadt, Germany
Get access

Abstract

Gallium nitride and carbon nanotubes have received wide interest in the materials research community since the mid-1990's. The former material is already in use in optoelectronics applications, while the latter is considered to be extremely promising in a wide range of materials. Common to both materials is that ion irradiation may be useful for modifying their properties. In this paper we overview our recent molecular dynamics simulations results on ion irradiation of these materials. We employ such potentials to study the basic physics of how ion irradiation affects these materials. In particular we discuss the reasons for the high radiation hardness of GaN, and the surprising nature of vacancies and interstitials in carbon nanotubes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Abell, G. C., Phys. Rev. B 31, 6184 (1985).Google Scholar
2. Tersoff, J., Phys. Rev. B 37, 6991 (1988).Google Scholar
3. Brenner, D. W., Phys. Rev. B 42, 9458 (1990),;Google Scholar
Brenner, D. W., Phys. Rev. B 46, 1948 (1992).Google Scholar
4. Brenner, D. W., physica status solidi (b) 217, 23 (2000).Google Scholar
5. Albe, K., Nordlund, K., and Averback, R. S., Phys. Rev. B 65, 195124 (2002).Google Scholar
6. Albe, K., Nordlund, K., Nord, J., and Kuronen, A., Phys. Rev. B 66, 035205 (2002).Google Scholar
7. Nord, J., Albe, K., Erhart, P., and Nordlund, K., Journal of Physics: Condensed Matter 15, 5649 (2003).Google Scholar
8. Krasheninnikov, A. V., Nordlund, K., and Keinonen, J., Phys. Rev. B 65, 165423 (2002), also selected to Virtual Journal of Nanoscale Science & Technology Vol. 5 Issue 16 (2002).Google Scholar
9. Nordlund, K. et al., J. Appl. Phys. 90, 1710 (2001).Google Scholar
10. Nord, J., Nordlund, K., and Keinonen, J., Nucl. Instr. Meth. Phys. Res. B 193, 294 (2002).Google Scholar
11. Nord, J., Nordlund, K., and Keinonen, J., Phys. Rev. B 68, 184104 (2003).Google Scholar
12. Nord, J., Nordlund, K., Pipeleers, B., and Vantomme, A., Materials Science and Engineering B (2003), EMRS 2003 conference paper, accepted for publication.Google Scholar
13. Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids (Oxford University Press, Oxford, England, 1989).Google Scholar
14. Nordlund, K., Comput. Mater. Sci. 3, 448 (1995).Google Scholar
15. Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Matter (Pergamon, New York, 1985).Google Scholar
16. Sillanpää, J. et al., Phys. Rev. B 63, 134113 (2000).Google Scholar
17. Deng, H. and Bacon, D. J., Phys. Rev. B 48, 10022 (1993).Google Scholar
18. Nordlund, K., Runeberg, N., and Sundholm, D., Nucl. Instr. Meth. Phys. Res. B 132, 45 (1997).Google Scholar
19. Zhu, H. and Averback, R. S., Phys. Rev. B 51, 15559 (1995).Google Scholar
20. Moseler, M., Nordiek, J., and Haberland, H., Phys. Rev. B 56, 15439 (1997).Google Scholar
21. Tan, H. H. et al., Appl. Phys. Lett. 69, 2364 (1996).Google Scholar
22. Liu, C., Mensching, B., Volz, K., and Rauschenbach, B., Appl. Phys. Lett. 71, 2313 (1997).Google Scholar
23. Liu, C. et al., Phys. Rev. B 57, 2530 (1998).Google Scholar
24. Liu, K., Avouris, P., Martel, R., and Hsu, W. K., Phys. Rev. B 63, 161404 (2001).Google Scholar
25. Kucheyev, S. O. et al., Appl. Phys. Lett. 77, 1455 (2000).Google Scholar
26. Kucheyev, S. O. et al., Phys. Rev. B 62, 7510 (2000).Google Scholar
27. Kucheyev, S. O. et al., Phys. Rev. B 64, 035202 (2001).Google Scholar
28. Kucheyev, S. O. et al., Nucl. Instr. Meth. Phys. Res. B 178, 209 (2001).Google Scholar
29. Jiang, W., Weber, W. J., and Thevuthasan, S., J. Appl. Phys. 87, 7671 (2000).Google Scholar
30. Wendler, E. et al., Nucl. Instr. Meth. Phys. Res. B (2002), iBMM 2002 conference paper, submitted for publication.Google Scholar
31. Albe, K., Nordlund, K., and Nord, J., Modelling of compound semiconductors: Analytical bond-order potential for GaAs, to be published.Google Scholar
32. Wendler, E., Wesch, W., and Kamarou, E. A. A., Nucl. Instr. Meth. Phys. Res. B (2003), accepted for publication.Google Scholar
33. Rubia, T. Diaz de la, Averback, R. S., Benedek, R., and King, W. E., Phys. Rev. Lett. 59, 1930 (1987), see also erratum: Phys. Rev. Lett. 60 (1988) 76.Google Scholar
34. Kucheyev, S. O. et al., Phys. Rev. B 64, 035202 (2001).Google Scholar
35. Nord, J., Nordlund, K., and Keinonen, J., Phys. Rev. B 65, 165329 (2002).Google Scholar
36. Ehrhart, P., in Properties and interactions of atomic defects in metals and alloys, Vol. 25 of Landolt-Börnstein, New Series III, edited by Ullmaier, H. (Springer, Berlin, 1991), Chap. 2, p. 88.Google Scholar
37. Partyka, P. et al., Phys. Rev. B 64, 235207 (2002).Google Scholar
38. Suzuki, M. et al., Appl. Phys. Lett. 81, 2273 (2002).Google Scholar
39. Stahl, H. et al., Phys. Rev. Lett. 85, 5186 (2000).Google Scholar
40. Wei, B. Q., D'Arcy-Gall, J., Ajayan, P. M., and Ramanath, G., Appl. Phys. Lett. 83, 3581 (2003).Google Scholar
41. Terrones, M. et al., Phys. Rev. Lett 89, 075505 (2002).Google Scholar
42. Yun, W. S. et al., J. Vac. Sci. Technol. A 18, 1329 (2000).Google Scholar
43. Ni, B. et al., Applied. Physics A: Mater. Sci. Process. 105, 12719 (2001).Google Scholar
44. Ni, B. and Sinnott, S. B., Phys. Rev. B (Rapid Comm.) 61, (2000).Google Scholar
45. Krasheninnikov, A. V. et al., Phys. Rev. B 63, 245405 (2001).Google Scholar
46. Krasheninnikov, A. V., Nordlund, K., and Keinonen, J., Phys. Rev. B 65, 165423 (2002).Google Scholar
47. Krasheninnikov, A. V., Nordlund, K., and Keinonen, J., Appl. Phys. Lett. 81, 1101 (2002).Google Scholar
48. Salonen, E., Krasheninnikov, A. V., and Nordlund, K., Nucl. Instr. and Meth. in Phys. Res. B 193, 603 (2002).Google Scholar
49. Krasheninnikov, A. V., Nordlund, K., Keinonen, J., and Banhart, F., Phys. Rev. B 66, 245403 (2002).Google Scholar
50. Krasheninnikov, A. V. and Nordlund, K., J. Vac. Sci. Technol. B 20, 728 (2002).Google Scholar
51. Pomoell, J., Krasheninnikov, A. V., Nordlund, K., and Keinonen, J., Nucl. Instr. and Meth. in Phys. Res. B 206, 18 (2003).Google Scholar
52. Banhart, F., Rep. Prog. Phys. 62, 1181 (1999).Google Scholar
53. Krasheninnikov, A. V., Nordlund, K., Lehtinen, P.O., Foster, A.S., Ayuela, A., and Nieminen, R. M., Phys. Rev. B., in press.Google Scholar
54. Stone, A. J. and Wales, D. J., Chem. Phys. Lett. 128, 501 (1986).Google Scholar
55. Nygärd, J. and Cobden, D., Appl. Phys. Lett. 79, 4216 (2001).Google Scholar
56. Ajayan, P. M., Ravikumar, V., and Charlier, J.-C., Phys. Rev. Lett. 81, 1437 (1998).Google Scholar
57. Nordlund, K., Keinonen, J., and Mattila, T., Phys. Rev. Lett. 77, 699 (1996).Google Scholar
58. El-Barbary, A. A. et al., Phys. Rev. B 68, 144107 (2003).Google Scholar
59. Lee, Y. H., Kim, S. G., and Tománek, D., Phys. Rev. Lett. 78, 2393 (1997).Google Scholar
60. Heggie, M. et al., Electrochem. Soc. Proc. 98, 60 (1998).Google Scholar
61. Lehtinen, P. O. et al., Phys. Rev. Lett. 91, 017202 (2003).Google Scholar