Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-18T02:51:49.576Z Has data issue: false hasContentIssue false

Atomic-Scale Modeling of the Deformation of Nanocrystalline Metals

Published online by Cambridge University Press:  10 February 2011

J. Schiotz
Affiliation:
Center for Atomic-scale Materials Physics and Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark Materials Research Department, Risø National Laboratory, DK-4000 Roskilde, Denmark.
T. Vegge
Affiliation:
Center for Atomic-scale Materials Physics and Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark Materials Research Department, Risø National Laboratory, DK-4000 Roskilde, Denmark.
K. W. Jacobsen
Affiliation:
Center for Atomic-scale Materials Physics and Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark
Get access

Abstract

Nanocrystalline metals, i.e. metals with grain sizes from 5 to 50 nm, display technologically interesting properties, such as dramatically increased hardness, increasing with decreasing grain size. Due to the small grain size, direct atomic-scale simulations of plastic deformation of these materials are possible, as such a polycrystalline system can be modeled with the computational resources available today.

We present molecular dynamics simulations of nanocrystalline copper with grain sizes up to 13 nm. Two different deformation mechanisms are active, one is deformation through the motion of dislocations, the other is sliding in the grain boundaries. At the grain sizes studied here the latter dominates, leading to a softening as the grain size is reduced. This implies that there is an “optimal” grain size, where the hardness is maximal.

Since the grain boundaries participate actively in the deformation, it is interesting to study the effects of introducing impurity atoms in the grain boundaries. We study how silver atoms in the grain boundaries influence the mechanical properties of nanocrystalline copper.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Siegel, R. W. and Fougere, G. E., in Nanophase Materials: Synthesis - Properties - Applications, edited by Hadjipanayis, G. C. and Siegel, R. W., vol. 260 of NATO-ASI Series E: Applied Sciences, p. 233 (Kluwer, Dordrecht, 1994).Google Scholar
[2] Morris, D. G. and Morris, M. A., Mater. Sci. Forum, 235–238, p. 861 (1997).Google Scholar
[3] Carstensen, J. V., Leffers, T., Lorentzen, T., Pedersen, O.B., Sorensen, B. F., and Winther, G., eds., Modelling of Structure and Mechanics of Materials from Microscale to Product, Proceedings of the 19th Risø International Symposium on Materials Science, Risø National Laboratory, Roskilde (1998).Google Scholar
[4] Carlsson, A. E. and Thomson, R., Solid State Physics, 51, p. 233 (1998).Google Scholar
[5] Schiotz, J., Tolla, F. D. Di, and Jacobsen, K. W., Nature, 391, p. 561 (1998).Google Scholar
[6] Schiotz, J., Vegge, T., Tolla, F. D. Di, and Jacobsen, K. W., in Carstensen et al. [3], p. 133.Google Scholar
[7] Schiotz, J., Vegge, T., Tolla, F. D. Di, and Jacobsen, K. W., Atomic-scale simulations of nanocrystalline metals, (to be published).Google Scholar
[8] Chen, D., Comput. Mater. Sci., 3, p. 327 (1995).Google Scholar
[9] Phillpot, S. R., Wolf, D., and Gleiter, H., J. Appl. Phys., 78, p. 847 (1995).Google Scholar
[10] Phillpot, S. R., Wolf, D., and Gleiter, H., Scripta Met. Mater., 33, p. 1245 (1995).Google Scholar
[11] Zhu, H. and Averback, R. S., Materials and Manufacturing Processes, 11, p. 905 (1996).Google Scholar
[12] Keblinski, P., Phillpot, R., Wolf, D., and Gleiter, H., Acta Mater., 45, p. 987 (1997).Google Scholar
[13] Swygenhoven, H. Van and Caro, A., Appl. Phys. Lett., 71, p. 1652 (1997).Google Scholar
[14] Swygenhoven, H. Van and Caro, A., NanoStructured Materials, 9, p. 669 (1997).Google Scholar
[15] Siegel, R. W., J. Phys. Chem. Solids, 55, p. 1097 (1994).Google Scholar
[16] Jacobsen, K. W., Norskov, J. K., and Puska, M. J., Phys. Rev. B, 35, p. 7423 (1987).Google Scholar
[17] Jacobsen, K. W., Stoltze, P., and Norskov, J. K., Surf. Sci., 366, p. 394 (1996).Google Scholar
[18] Jónsson, H. and Andersen, H. C., Phys. Rev. Lett., 60, p. 2295 (1988).Google Scholar
[19] Clarke, A. S. and Jónsson, H., Phys. Rev. E, 47, p. 3975 (1993).Google Scholar
[20] Hahn, H. and Padmanabhan, K. A., Phil. Mag. B, 76, p. 559 (1997).Google Scholar
[21] Sanders, P. G., Youngdahl, C. J., and Weertman, J. R., Mater. Sci. Eng. A, 234–236, p. 77 (1997).Google Scholar
[22] Sanders, P. G., Eastman, J. A., and Weertman, J. R., Acta mater., 46, p. 4195 (1998).Google Scholar
[23] Agnew, S. R., Elliott, B. R., Youngdahl, C. J., Hemker, K. J., and Weertman, J. R., in Carstensen et al. [3], p. 1.Google Scholar