Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T15:58:14.899Z Has data issue: false hasContentIssue false

The Atomic Structure Of The Zn-Mg-Rare-Earth Quasicrystals Studied By High-Resolution Electron Microscopy

Published online by Cambridge University Press:  10 February 2011

Eiji Abe
Affiliation:
National Research Institute for Metals, 1-2-1 Sengen, Tsukuba 305, JAPAN, abe@tamamori.nrim.go.jp
An Pang Tsai
Affiliation:
National Research Institute for Metals, 1-2-1 Sengen, Tsukuba 305, JAPAN, abe@tamamori.nrim.go.jp
Get access

Abstract

High-resolution transmission electron microscopy has been applied to study the real atomic structure of the decagonal (d-) quasicrystal in the Zn-Mg-rare-earth (RE) system, which is the first d-phase based on Frank-Kasper phase. We show that the phase has a novel structure in which the atomic arrangement in the tenfold symmetry plane can simply be interpreted as the Penrose tiling decorated by individual atoms - the simplest realization of the Penrose tiling as a real atomic structure. This is supported by the fact that a similar local atomic configuration exists in the Zn7Mg4 crystal structure. This simple structural model is in sharp contras to the idea of atomic clusters, which has been successfully used to describe the structure of quasicrystals in Altransition metal alloys. The present results strongly suggest that the symmetric atomic clusters are not an essential factor for formation of quasicrystals. Instead, a new idea of quasi-unit-cell and its covering is applied for structural description. The atomic structure of the Zn-Mg-RE icosahedral phase is also implied to follow the present concept, based on the fact that its related crystalline phases with hexagonal lattices are not built of giant atomic clusters with icosahedral symmetry.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Luo, Z., Zhang, S., Tang, Y and Zhao, D., Scripta metall. mater., 28, 1513 (1993).Google Scholar
2. Niikura, A., Tsai, A. P., Inoue, A. and Masumoto, T., Phil. Mag. Lett., 69, 351 (1994).Google Scholar
3. Sato, T. J., Abe, E. and Tsai, A. P., Phil. Mag. Lett., 77, 213 (1998).Google Scholar
4. Roth, J. and Henley, C. L., Phil. Mag. A, 75, 861 (1997).Google Scholar
5. Elser, V. and Henley, C. L., Phys. Rev. Lett., 55, 2883 (1985).Google Scholar
6. Henley, C. L. and Elser, V., Phil. Mag. B, 53, L59 (1986).Google Scholar
7. Hiraga, K., in Advances in Imaging and Electron Physics, edited by Hawkes, P. W. (Academic Press, 1998), p37 Google Scholar
8. Steinhardt, P. J., Jeong, H. -C., Saitoh, K., Tanaka, M., Abe, E. and Tsai, A. P., Nature 396, 55 (1998)Google Scholar
9. Abe, E., Takakura, H., Singh, A. and Tsai, A. P., J.Alloys and Comp. in press.Google Scholar
10. Ritch, S., Beeli, C., Nissen, H. -U., Godecke, T., Scheffer, M. and Luck, R., Phil. Mag. Lett., 74, 99 (1996).Google Scholar
11. Tsai, A. P., Fujiwara, A., Inoue, A. and Masumoto, T., Phil. Mag. Lett. 74, 233 (1996).Google Scholar
12. Yamamoto, A. and Ishihara, K. N., Acta Cryst. A 44, 707 (1988).Google Scholar
13. Hiraga, K., Lincoln, F. J. and Sun, W., Mater. Trans. JIM, 32, 308 (1991).Google Scholar
14. Steurer, W. and Kuo, K. H., Acta Cryst. B 46, 703 (1990).Google Scholar
15. Burkov, S. E., Phys. Rev. Lett. 67, 614 (1991).Google Scholar
16. Abe, E., Sato, T. J. and Tsai, A. P., submittedGoogle Scholar
17. Yarmoryuk, Ya. P., Kripyakevich, P. I. and Mel'nik, E. V., Soviet Phys. cryst., 25, 329 (1975)Google Scholar
18. Abe, E., Sato, T. J. and Tsai, A. P., Phil. Mag. Lett. 77, 205 (1998).Google Scholar
19. Janssen, T., Acta Cryst. A 42, 261 (1986).Google Scholar
20. Saitoh, K., Tsuda, K., Tanaka, M., Kaneko, K. and Tsai, A.P., Jpn. J. Appl. Phys. 36, L1404 (1997).Google Scholar
21. Gummelt, P., Geometriae Dedicata 62, 1 (1996).Google Scholar
22. Steinhardt, P. J. and Jeong, H. -C., Nature 382, 433 (1996).Google Scholar
23. Abe, E., Sato, T. J. and Tsai, A. P., in Proc. of Int. Cong. on Electron Microscopy 14 - Cancun Vol. III, p.23 (1998).Google Scholar
24. Takakura, H., Sato, A., Yamamoto, A., and Tsai, A. P., Phil. Mag. Lett. 78, 263 (1998).Google Scholar
25. Sugiyama, K., Yasuda, K., Ohsuna, T. and Hiraga, K., Z. Kristallogr. 213, 537 (1998).Google Scholar
26. Abe, E. and Tsai, A. P., in Proc. Aperiodic ‘97 in press.Google Scholar
27. Boudard, M., Boissieu, M. de, Janot, C., Heger, C., Beeli, C., Nissen, H. -U., Vincent, H., Ibberson, R., Audier, M. and Dubois, J. M., J. Phys.: Condens. Matter 4, 10149 (1992).Google Scholar
28. Hiraga, K., Sugiyama, K. and Ohsuna, T., Phil. Mag. A in pressGoogle Scholar