Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-27T19:44:40.762Z Has data issue: false hasContentIssue false

Atomic Structure of the (310) Twin in Niobium: Theoretical Predictions and Comparison with Experimental Observation

Published online by Cambridge University Press:  15 February 2011

Geoffrey H. Campbell
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
S. M. Foiles
Affiliation:
Sandia National Laboratories, Livermore, CA 94551, USA
M. Rühle
Affiliation:
Max-Planck-Institute für Metallforschung, Institut für Werkstoffwissenschaft, Seestr. 92, 7000 Stuttgart 1, FRG
W. E. King
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
Get access

Abstract

High - resolution transmission electron microscopy (HREM) has been used to characterize the atomic structure of the symmetric 36.9° tilt grain boundary with [001] tilt axes forming a twin about (310) in Nb. The projected structure was imaged along two different directions in the plane of the boundary and was compared to model structures through high - resolution image simulation. The atomic structure of this Σ5 boundary was predicted with atomistic simulations using interatomic potentials derived from the Embedded Atom Method (EAM), Finnis-Sinclair (FS), and the Model Generalized Pseudopotential Theory (MGPT). The EAM and FS predicted structures with translations of the adjacent crystals which break mirror symmetry. The MGPT predicted one stable structure with mirror symmetry. The atomic structure of the (310) twin in Nb was found by HREM to be mirror symmetric. These findings indicate that the angular dependent interactions modeled in the MGPT are important for determining the grain boundary structures of bcc transition metals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Atomistic Simulation of Materials, ed. Vitek, V. and Srolovitz, D. J. (Plenum Press, New York, 1989).Google Scholar
2. Baskes, M. I., Foiles, S. M. and Daw, M. S., Mater. Sci. Forum 46,187 (1989).Google Scholar
3. Foiles, S. M., in Surface Segregation Phenomena, edited by Dowben, P. A. and Miller, A. (CRC Press, Boca Raton, FL, 1990) p. 79.Google Scholar
4. Kohlhoff, S., Gumbsch, P. and Fischmeister, H. F., Philos. Mag. A 64 (4), 851 (1991).Google Scholar
5. Daw, M. S. and Baskes, M. I., Phys. Rev. Lett. 50 (17), 1285 (1983).Google Scholar
6. Daw, M. S. and Baskes, M. I., Phys. Rev. B 29 (12), 6443 (1984).Google Scholar
7. Finnis, M. W. and Sinclair, J. E., Philos. Mag. A 50 (1), 45 (1984).CrossRefGoogle Scholar
8. Moriarty, J. A., Phys. Rev. B 42 (3), 1609 (1990).CrossRefGoogle Scholar
9. Dahmen, U., Hetherington, C. J., O'Keefe, M. A., Westmacott, K. H., Mills, M. J., Daw, M. S. and Vitek, V., Philos. Mag. Lett. 62 (5), 327 (1990).Google Scholar
10. Carlsson, A. E., in Advances in Research and Applications, edited by Ehrenreich, H. and Turnbull, D. (Academic Press, Solid State Physics 43, New York, 1990) p. 1.Google Scholar
11. Vitek, V., Smith, D. A. and Pond, R. C., Philos. Mag. A 41 (5), 649 (1980).Google Scholar
12. Moriarty, J. A. and Phillips, R. B., Phys. Rev. Lett. 66 (23), 3036 (1991).Google Scholar
13. Carlsson, A. E., Phys. Rev. B 44 (13), 6590 (1991).CrossRefGoogle Scholar
14. Ackland, G. J. and Finnis, M. W., Philos. Mag. A 54 (2), 301 (1986).Google Scholar
15. Pénisson, J. M., Gronsky, R. and Brosse, J. B., Scripta Metall. 16, 1239 (1982).CrossRefGoogle Scholar
16. Pénisson, J. M., Nowicki, T. and Biscondi, M., Philos. Mag. A 58 (6), 947 (1988).Google Scholar
17. Johnson, R. A. and Oh, D. J., J. Mater. Res. 4 (5), 1195 (1989).Google Scholar
18. Ackland, G. J. and Thetford, R., Philos. Mag. A 56 (1), 15 (1987).Google Scholar
19. Moriarty, J. A., in Many - Atom Interactions in Solids edited by Nieminen, R. N., Puska, M. J. and Manninen, M. J. (Springer - Verlag, Berlin, 1990) p. 158.Google Scholar
20. Bollmann, W., Crystal Defects and Crystalline Interfaces (Springer Verlag, Berlin, 1970).Google Scholar
21. Merkle, K. L. and Wolf, D., Bull. Mater. Res. Soc. 15 (9), 42 (1990).CrossRefGoogle Scholar
22. Pirouz, P. and Ernst, F., in Metal - Ceramic Interfaces edited by Rühle, M., Evans, A. G., Hirth, J. P. and Ashby, M. F. (Pergamon Press, New York, 1990) p. 199.Google Scholar
23. Barry, J. C., in Computer Simulations of Electron Microscope Diffraction and Images edited by Krakow, W. and O'Keefe, M. (The Minerals, Metals, and Materials Society, Warrendale, PA, 1989) p. 57.Google Scholar
24. King, W. E., Campbell, G. H., Coombs, A., Mills, M. J. and Rühle, M., in Defects in Materials, edited by Bristowe, P. D., Epperson, J. E., Griffith, J. E. and Liliental-Weber, Z. (Mat. Res. Soc. Symp. Proc. 209 Pittsburgh, PA, 1991) p. 39.Google Scholar
25. Stadelmann, P. A., Ultramicroscopy 21,131 (1987).Google Scholar
26. Cowley, J. M. and Moodie, A. F., Acta Cryst. 10, 609 (1957).CrossRefGoogle Scholar
27. Campbell, G. H., King, W. E., Foiles, S. M., Gumbsch, P. and Rühle, M., in Structure and Properties of Interfaces in Materials edited by Clark, W. A. T., Dahmen, U. and Briant, C. L. (Mat. Res. Soc. Symp. Proc. 238, Pittsburgh, PA, 1992) p. 163.Google Scholar
28. Merkle, K. L. and Smith, D. J., Phys. Rev. Lett. 59 (25), 2887 (1987).Google Scholar