Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T10:07:01.291Z Has data issue: false hasContentIssue false

The Atomic Structure of Mosaïc Grain Boundary Dislocations in GaN Epitaxial Layers

Published online by Cambridge University Press:  10 February 2011

V. Potin
Affiliation:
Groupe d'Etudes des Semiconducteurs, Université de Montpellier II, Place Eugene Bataillon, 34095 Montpellier cedex 5, France
G. Nouet
Affiliation:
Laboratoire d'Etudes et de Recherches sur les Materiaux, UPRESA 6004 CNRS, Institut des Sciences de la Matière et du Rayonnement, 6 boulevard Maréchal Juin, 14050 Caen Cedex, France. ruterana@lermat8.ismra.fr
P. Ruterana
Affiliation:
Groupe d'Etudes des Semiconducteurs, Université de Montpellier II, Place Eugene Bataillon, 34095 Montpellier cedex 5, France
R.C. Pond
Affiliation:
Department of Materials Science and Engineering, the University of Liverpool, Liverpool L69 3 GH, England.
Get access

Abstract

The studied GaN layers are made of mosaYc grains rotated around the c-axis by angles in the range 0-25°. Using high-resolution electron microscopy, anisotropic elasticity calculations and image simulation, we have analyzed the atomic structure of the edge threading dislocations. Here, we present an analysis of the Σ = 7 boundary using circuit mapping in order to define the Burgers vectors of the primary and secondary dislocations. The atomic structure of the primary ones was found to exhibit 5/7 and 8 atom cycles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, M. and Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996).Google Scholar
2.Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, M., Sugimoto, Y., Kozaki, T., Umemoto, H.Sano, M. and Chocho, K., Appl. Phys. Lett. 6, 832 (1998).Google Scholar
3.Herzog, A.H., Keune, D.L. and Craford, M.G., J. Appl. Phys. 43, 60 (1972).Google Scholar
4.Potin, V., Vermaut, P., Ruterana, P. and Nouet, G., J. Electron. Mater. 4, 266 (1998).Google Scholar
5.Pond, R.C., “Dislocations in solids”, Vol. 8, Ed Nabarro, F.R.N., North Holland Publ. Co., Amsterdam/New York, p. 1 (1989).Google Scholar
6.Pond, R.C. and Vlachavas, D.S., Proc. Roy. Soc. London A 386, 95 (1983).Google Scholar
7.Pond, R.C., Interface Science 2, 1 (1995).Google Scholar
8.Ruterana, P., Potin, V. and Nouet, G., Mat. Res. Soc. Symp. Proc. Vol. 482, 459 (1998).Google Scholar
9.Potin, V., Ruterana, P. and Nouet, G., Mat. Sci. Eng. B 50, 29 (1997).Google Scholar
10.Potin, V., Ruterana, P., Nouet, G. and Pond, R.C., Phys. Stat. Sol. B 216, (1999).Google Scholar
11.Potin, V., Ruterana, P., Nouet, G., Pond, R.C. and Morkog, H., Phys. Rev. B, in pressGoogle Scholar