Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-24T18:59:38.369Z Has data issue: false hasContentIssue false

Atomic structure of metal-free and catalyzed Si nanowires

Published online by Cambridge University Press:  25 May 2011

Giuseppe Nicotra
Affiliation:
CNR-IMM of Catania Stradale Primosole 50 I-95121 Catania, Italy.
Corrado Bongiorno
Affiliation:
CNR-IMM of Catania Stradale Primosole 50 I-95121 Catania, Italy.
Annalisa Convertino
Affiliation:
CNR-IMM of Rome via del Fosso del Cavaliere 100, 00133 Rome, Italy.
Massimo Cuscunà
Affiliation:
CNR-IMM of Rome via del Fosso del Cavaliere 100, 00133 Rome, Italy.
Faustino Martelli
Affiliation:
CNR-IMM of Rome via del Fosso del Cavaliere 100, 00133 Rome, Italy.
Corrado Spinella
Affiliation:
CNR-IMM of Catania Stradale Primosole 50 I-95121 Catania, Italy.
Get access

Abstract

Metal-free and Au-catalyzed silicon nanowires (Si-NWs) grown at low temperatures have been analyzed through transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and their crystalline phase studied. All the observed nanowires are crystalline, grow along two different directions, <110> or <112>, and contain high density of planar defects, such as stacking faults (SFs) and twins. The defect size is comparable to the wire diameter for the metal-free process whilst it is much larger than the wire diameter for the Aucatalyzed Si-NWs. In this latter case parallel SFs may re-arrange and transform in a metastable rhombohedral 9R polytype structure whose formation mechanism is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wagner, R. S. and Ellis, W. C. Appl. Phys. Lett. 4, 89 (1964).Google Scholar
2. Cuscunà, M., Convertino, A., Mariucci, L., Fortunato, G., Felisari, L., Nicotra, G., Spinella, C., Pecora, A., and Martelli, F., Nanotechnology 21, 255601 (2010).Google Scholar
3. Liu, X. and Wang, D. Nano Res 2, 575 (2009)Google Scholar
4. Cayron, C., Hertog, M. D., Latu-Romain, L., Mouchet, C., Secouard, C., Rouviere, J., Rouvierea, E. and Simonato, J., J. Appl. Cryst., 42, 242 (2009)Google Scholar
5. Fontcuberta i Morral, A., Arbiol, J., Prades, J.D., Cirera, A., Morante, J.R., Adv. Mater. 19, 13471351 (2007)Google Scholar
6. Davidson, F. M., Lee, D. C., Fanfair, D. D., and Korgel, B. A. J. Phys. Chem. C, 111, 2929 (2007)Google Scholar
7. Lopez, F. J., Hemesath, E. R., and Lauhon, L. J., Nano Lett., 9, No. 7, (2009)Google Scholar