Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-01T14:21:12.061Z Has data issue: false hasContentIssue false

Atomic Oxidation of Ultra Thin SiGe Using Afterglow Oxygen Plasma

Published online by Cambridge University Press:  25 February 2011

P. C. Chen
Affiliation:
Department of Electrical Engineering, National Tsing Hua University, Hsin-chu, Taiwan, R.O.C.
J. Y. Lin
Affiliation:
Department of Electrical Engineering, Chung Cheng Institute of Technology, Ta—shi, Tao—yuan, Taiwan, R.O.C.
Y. J. Hsut
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA
H. L. Hwang
Affiliation:
Department of Electrical Engineering, National Tsing Hua University, Hsin-chu, Taiwan, R.O.C.
Get access

Abstract

Microwave remote plasma oxidation system was used to study the oxidation of SiGe samples at low temperatures. The extent of Ge segregation at oxide/SiGe interface was investigated by using SIMS depth profiles. By comparing the segregation factors, the Ge segregation in the samples oxidized by atomic oxygen at 500 °C was much less than that in the samples oxidized without plasma at 950 °C. The Ge segregation has been largely suppressed by atomic oxygen oxidation at lower temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Vandebroek, S. V., Crabbe, E. F., Meyerson, B. S., Harame, D. L., Restle, P. J., Stork, J. M. C., Megdanis, A. C., Stanis, C. L., Bright, A. A., Kroesen, G. M. W. and Warren, A. C., IEEE Electron Dev. Lett. 12(8), 447 (1991).Google Scholar
2 Garone, P. M., Venkataraman, V. and Sturm, J. C., IEDM Tech. Dig., 383 (1990).Google Scholar
3 Kamins, T. I., Wang, K. L., Park, J., Davis, G. E., J. Appl. Phys. 65(4), 1505 (1989).Google Scholar
4 Meyerson, B. S., Appl. Phys. Lett. 48(12), 797 (1986).Google Scholar
5 Selvakumar, C. R. and Hecht, B., IEEE Electron Dev. Lett. 12(8), 444 (1991).Google Scholar
6 LeGoues, F. K., Rosenberg, R. and Meyerson, B. S., Appl. Phys. Lett. 54(7), 644 (1989).Google Scholar
7 Srivatsa, A. R., Sharan, S., Holland, O. W. and Narayan, J., J. Appl. Phys. 65(10), 4028 (1989).Google Scholar
8 LeGoues, F. K., Rosenberg, R., Nguyen, T., Himpsel, F. and Meyerson, B. S., J. Appl. Phys. 65(4), 1724 (1989).Google Scholar
9 Frey, E. C., Parkikh, N. R., Swanson, M. L., Numan, M. Z. and Chu, W. K., Mat. Res. Soc. Symp. Proc. 105, 277 (1988).Google Scholar
10 Ruzyllo, J., Hoff, A. and Ruggles, G., J. Electronic Mat. 16(5), 373 (1987).Google Scholar
11 Yasuda, Y., Zaima, S., Kaida, T. and Koide, Y., Appl. Surf. Sci. 41/42, 429 (1989).Google Scholar
12 Tsuji, M., Sakumoto, M. and Fujii, Y., Chem. Lett., 881 (1990).Google Scholar
13 Iyer, S. S., Soloman, P. M., Kesan, V. P., Bright, A. A., Freeouf, J. L., Nguyen, T. N. and Warren, A. C., IBM Research Report (1990).Google Scholar