Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-18T13:48:39.914Z Has data issue: false hasContentIssue false

Atomic Force Microscopy Study of Initial Nucleation in the Deposition OF μc-Si:H

Published online by Cambridge University Press:  15 February 2011

P. Brogueira
Affiliation:
Dept. of Physics, Instituto Superior Técnico, Lisbon, Portugal
V. Chu
Affiliation:
Instituto de Engenharia de Sistemas e Computadores, Lisbon, Portugal.
J.P. Conde
Affiliation:
Dept. of Materials Engineering, Instituto Superior Técnico, Lisbon, Portugal
Get access

Abstract

The initial stages of microcrystalline silicon growth of n+ doped films prepared by rf plasma enhanced chemical vapor deposition (PECVD) and of intrinsic films prepared by hot-wire chemical vapor deposition (HW-CVD) are studied using atomic force microscopy, Raman spectroscopy and parallel dark conductivity measurements. The effect of the use of a plasma hydrogen treatment, of chamber conditioning prior to this treatment, of the type of substrate (glass or c-Si) used and the effects of a seed layer on the film properties are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Street, R. A., Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, 1991).Google Scholar
2. Konuma, M., curtins, H., Sarott, F. A. and Veprek, S., Phil. Mag. B 55, 377 (1987).Google Scholar
3. Matsuda, A., J. Non-Cryst. Solids 59–60, 767 (1983).Google Scholar
4. Yoshimi, M., Ma, W., Horiuchi, T., Lim, C.C., De, S.C., Hahari, K., Okamoto, H. and Mamakawa, Y., Mater. Res. Soc. Symp. Proc. 258, 845 (1992).Google Scholar
5. Conde, J.P., Silva, H. and Chu, V., Mater. Res. Soc. Symp. Proc., to be published (1998).Google Scholar
6. Lanin, J.S., Semiconductors and Semimetals, Part B (Academic, New York, 1984), Vol 21.Google Scholar
7. Kaneko, T., Wakagi, M., Onisawa, K. and Minemura, T., Appl. Phys. Lett. 64, 1865 (1994).Google Scholar
8. Veprek, S., Sarrot, F. A. and Iqbal, Z., Phys. Rev. B 36, 3344 (1987).Google Scholar
9. Tsu, R., Hernandez, J. G., Chao, S. S., Lee, S. C. and Tanaka, K., Appl. Phys. Lett. 40, 534 (1982).Google Scholar
10. Kakinuma, H., Mohri, M. and Tsuruoka, T., J. Appl. Phys. 70, 7374 (1991).Google Scholar
11. He, Y., Yin, C., Cheng, G., Wang, L., Liu, X. and Hu, G.Y., J. Appl. Phys. 75, 797 (1994).Google Scholar
12. Saitoh, K., Kondo, M., Fukawa, m., Nishimiya, T., Matsuda, A., Futako, W. and Shimizu, I., Appl. Phys. Lett. 71, 3403 (1997).Google Scholar
13. Smith, L.L., Srinivasan, E. and Parsons, G.N., J. Appl. Phys. 82, 6041 (1997).Google Scholar