Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-02T03:32:35.906Z Has data issue: false hasContentIssue false

Atomic and Electronic Structure of the Corundum (0001) Surface

Published online by Cambridge University Press:  15 February 2011

V. E. Puchin
Affiliation:
University of Latvia, Rainis blvd. 19, Riga, LV-1586, Latvia
E. A. Kotomin
Affiliation:
University of Latvia, Rainis blvd. 19, Riga, LV-1586, Latvia
A. L. Shluger
Affiliation:
Centre for Materials Research, Department of Physics, University College London, Gower St., London WC1E 6BT, U.K.
Get access

Abstract

The electronic structure and geometry of the Al terminated corundum (0001) surface were studied using a slab model within the ab-initio Hartree-Fock technique. The distance between the top Al plane and the next O basal plane is found to be considerably reduced on relaxation (by 0.57 Å, i.e. by 68% of the corresponding interlayer distance in the bulk). An interpretation of experimental photoelectron spectra (UPS Hel) and metastable impact electron spectra (MIES) is given. Calculated projected densities of states exhibit a strong dependence on the relaxation of surface atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Science of Alumina (French, R. H., Heuer, A. H.. Eds.) J. Am. Ceram. Soc. 77, 292453 (1994)Google Scholar
2. Tasker, P. W., Adv. Ceram. 10, 176–89 (1988)Google Scholar
3. Mackrodt, W. C., J. Chem. Soc. Faraday Trans. 2, 85, 541 (1989);Google Scholar
Mackrodt, W. C., Phil. Trans. R. Soc. A, 341, 301 (1992)Google Scholar
4. Pisani, C., Causà, M., Dovesi, R., Roetti, C., Progr. Surf. Sci. 25, 119 (1987);Google Scholar
Causa, M., Dovesi, R., Pisani, C., Roetti, C., Surf. Sci. 215, 259 (1989);Google Scholar
Salasco, L., Dovesi, R., Orlando, R., Causà, M., Saunders, V. R., Mol. Phys. 72, 267 (1991)Google Scholar
5. Manassidis, I., De Vita, A., Gillan, M. J., Surf. Sci. Lett. 285, L517 (1993);Google Scholar
Manassidis, I., Gillan, M. J., J. Am. Ceram. Soc. 11, 335 (1994)Google Scholar
6. Ochs, D., Brause, M., Günster, J., Maus-Friedrichs, W., Kempter, V., Puchin, V. E., Kantorovich, L. N., Shluger, A. L., Surf. Sci. (1996) in press.Google Scholar
7. Hitzke, A., Günster, J., Kolaczkiewicz, J., Kempter, V., Surf Sci. 318, 139 (1994);Google Scholar
8. Günster, J., Hitzke, A., Brause, M., Mayer, Th., Kempter, V., Nucl. Instr. Meth. B, 100, 411 (1995);Google Scholar
9. Günster, J., Dissertation, TU Clausthal (1996), ISBN 3–931443–62–0Google Scholar
10. Chen, P. J., Goodman, D. W., Surf. Sci. 312, L767 (1994)Google Scholar
11. Pisani, C., Dovesi, R., Roetti, C., Hartree-Fock Ab-initio Treatment of Crystalline Systems, Lecture Notes in Chemistry, Vol. 48, Springer Verlag, Heidelberg, 1988;Google Scholar
Dovesi, R., Saunders, V. R., Roetti, C., CRYSTAL-92 User Manual, QCPE program n. 577, Bloomington, Indiana, 1989.Google Scholar
12. Mackrodt, W. C. (to be published);Google Scholar
Gale, J. D., Catlow, C. R. A. and Mackrodt, W. C., Modelling Simul. Mater. Sci. Eng. 1, 73 (1992)Google Scholar
13. Puchin, V. E., Gale, J. D., Shluger, A. L., Kotomin, E. A., Günster, J., Brause, M., Kempter, V., Surf. Sci. (in press).Google Scholar