Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T11:26:05.367Z Has data issue: false hasContentIssue false

Atmoic-Scale Control of Oxide Substrate Surface/Termination and Novel Heteroepitaxial Growth

Published online by Cambridge University Press:  15 March 2011

Mamoru Yoshimoto
Affiliation:
Materials & Structures Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori, Yokohama, 226-8503, Japan, (yoshimo@oxide.rlem.titech.ac.jp)
Keisuke Mizuno
Affiliation:
Materials & Structures Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori, Yokohama, 226-8503, Japan
Takafumi Miyahara
Affiliation:
Materials & Structures Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori, Yokohama, 226-8503, Japan
Get access

Abstract

Atomic-scale surface/termination of single-crystal oxide substrates were examined by coaxial impact collision ion scattering spectroscopy (CAICISS) and atomic force microscopy (AFM). CAICISS enabled us to determine the terminating atomic species and their arrangements of single crystal oxide substrates and epitaxial oxide films. Through thermal-annealing of the single crystal oxide substrates, atomically flat terrace and stepped structures were developed on the surface. The molecular layer-by-layer growth was verified by in situ monitoring of reflection high energy electron diffraction (RHEED) intensity oscillation. The atomic-scale substrate engineering made it possible to attain the novel heteroepitaxial growth such as step-decoration epitaxy resulting in the nanowire structures and diamond epitaxy on the ultrasmooth sapphire substrate. The diamond films could be grown epitaxially only on the atomically flat sapphire substrates by pulsed laser ablation of graphite. The novel application of the ultrasmooth sapphire substrate to the AFM observation stage for DNA molecules was also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Koinuma, H. and Yoshimoto, M., Appl. Surf. Sci. 75, 308 (1994).Google Scholar
2. Koinuma, H., Nagata, H., Tsukahara, T., Gonda, S. and Yoshimoto, M., Appl.Phys. Lett. 58, 2027 (1991).Google Scholar
3. Locquet, J.P., Catana, A., Machler, E., Gerber, C., Bednorz, J.G., Appl. Phys.Lett. 64, 372 (1994).Google Scholar
4. McKee, R.A., Walker, F.J., Specht, E.D., Jellison, G.E. and Boatner, L.A., Phys. Rev. Lett. 72, 2742 (1994).Google Scholar
5. Yoshimoto, M., Maeda, T., Shimozono, K., Koinuma, H., Shinohara, M., O. Ishiyama and Ohtani, F., Appl.Phys.Lett. 25, 3197 (1994).Google Scholar
6. Aono, M., Oshima, C., Zaima, S., Otani, S. and Ishizawa, Y., Jpn. J. Appl. Phys. 20, L829 (1981).Google Scholar
7. Kawasaki, M., Takahashi, K., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, T., Yoshimoto, M. and Koinuma, H., Science 266, 1540 (1994).Google Scholar
8. Ohnishi, T., Takahashi, K., Nakamura, M., Kawasaki, M., Yoshimoto, M. and Koinuma, H., Appl. Phys. Lett. 74, 2531 (1999).Google Scholar
9. Yoshimoto, M., Maruta, H., Ohnishi, T., Sasaki, K. and Koinuma, H., Appl. Phys. Lett. 73, 187 (1998).Google Scholar
10. Lee, G. H., Yoshimoto, M., Ohnishi, T., Sasaki, K. and Koinuma, H., Mater. Sci. & Eng. B 56, 213 (1998).Google Scholar
11. Sasaki, K., Mizuno, K., Ohnishi, T., Koinuma, H. and Yoshimoto, M., Trans. Mater. Res. Soc. of Japan, 24, 47 (1999).Google Scholar
12. Yoshimoto, M., Maeda, T., Ohnishi, T., Koinuma, H., Ishiyama, O., Shinohara, M., Kubo, M., Miura, R. and Miyamoto, A., Appl.Phys.Lett. 67, 2615 (1995).Google Scholar
13. Maeda, T., Yoshimoto, M., Ohnishi, T., Lee, G.H. and Koinuma, H., J.Cryst. Growth 177, 95 (1997).Google Scholar
14. Ikeda, T., Fujioka, H., Ono, K., Oshima, M., Akinaga, H., Yoshimoto, M., Maruta, H., H. Koinuma and Watanabe, Y., J. Mag. Soc. Japan 23, 685 (1999).Google Scholar
15. Ikeda, T., Fujioka, H., Hayakawa, S., Ono, K., Oshima, M., Yoshimoto, M., Maruta, H., Koinuma, H., Inaba, K. and Matsuo, R., Jpn. J. Appl. Phys. 38, L854 (1999).Google Scholar
16. Yanagiya, S., Kamimura, S., Fujii, M., Ishida, M., Moriyasu, Y., Matsui, M., Yoshimoto, M., Ohnishi, T., Yoshida, K., Sasaki, K., and Koinuma, H., Appl. Phys. Lett. 71, 1409 (1997).Google Scholar
17. Lee, G-H., Yoshimoto, M. and Koinuma, H., Appl. Surf. Science 127/129, 393 (1998).Google Scholar
18. Butler, J. E. and Woodin, R. L., Phil. Trans. R. Soc. London A 342, 209 (1993).Google Scholar
19. Yoshimoto, M., Yoshida, K., Maruta, H., Hishitani, Y., Koinuma, H., Nishio, S., Kakihana, M., Tachibana, T., Nature 398, 340 (1999).Google Scholar
20. Yoshida, K., Yoshimoto, M., Sasaki, K., Ohnishi, T., Ushiki, T., Hitomi, J., Yamamoto, S. and Shigeno, M., Biophysical Journal 74, 1654 (1998).Google Scholar